Face Recognition for Personal Data Collection using Eigenface, Support Vector Machine, and Viola Jones Method

Lalu Zazuli Azhar Mardedi, Muhammad Zulfikri, Moch. Syahrir, Kurniadin Abd. Latif, Apriani Apriani

Abstract


Personal data recording through facial recognition is a modern solution for individual identification; however, the main challenge lies in the accuracy and reliability of the system under various conditions. This study examines the implementation of machine learning as a solution, utilizing video and photo data for face detection and recognition. The study’s goal is to evaluate the effectiveness of facial image recognition by combining several methods, aiming for practical application across diverse settings, such as offices and schools. The methodology includes segmentation testing for edge detection, feature extraction, and real-time recognition. The system was developed using Eigenface, Support Vector Machine, and Viola-Jones methods, trained over 20 sessions. The results indicate that the system can recognize faces under both daytime and nighttime conditions, achieving 87% accuracy during the day and 81% at night. These findings make a significant contribution to the development of security systems based on facial recognition and emphasize the potential of this technology to enhance personal data security across various contexts

Full Text:

PDF

References


L. Novamizanti, N. V. De Lima, and E. Susatio, “Sistem Pengenalan Wajah 3D menggunakan ICP dan SVM,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 6, p. 601, 2019, doi: 10.25126/jtiik.2019661609.

K. Mujib, A. Hidayatno, and T. Prakoso, “Pengenalan Wajah menggunakan Local Binary Pattern (LBP) dan Support Vector Machine (SVM),” Transient, vol. 7, no. 1, p. 123, 2018, doi: 10.14710/transient.7.1.123-130.

J. Wang, J. Zheng, S. Zhang, J. He, X. Liang, and S. Feng, “A Face Recognition System Based on Local Binary Patterns and Support Vector Machine for Home Security Service Robot,” in 2016 9th International Symposium on Computational Intelligence and Design (ISCID), 2016, pp. 303–307. doi: 10.1109/ISCID.2016.2079.

T. Susim and C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) menggunakan OpenCV,” J. Syntax Admiration, vol. 2, no. 3, pp. 534–545, 2021, doi: 10.46799/jsa.v2i3.202.

R. Kosasih, “Pengenalan Wajah menggunakan PCA dengan memperhatikan Jumlah Data Latih dan Vektor Eigen,” J. Inform. Univ. Pamulang, vol. 6, no. 1, p. 1, 2021, doi: 10.32493/informatika.v6i1.7261.

A. Zein, “Pendeteksian Multi Wajah dan Recognnition secara Real Time menggunakan Metoda Principle Component Analysis (PCA) dan Eigenface,” J. Teknol. Inf. ESIT, vol. 12, no. 01, pp. 1–7, 2018.

M. S. Hidayatulloh, A. Y. Permana, and W. H. Kristanto, “Pengenalan Wajah dengan Algoritma Support Vector Machine dan Sobel Edge Detection Berbasis Computer Vision dan Caffe Framework,” J. Ilm. Komputasi, vol. 19, no. 4, Dec. 2020, doi: 10.32409/jikstik.19.4.372.

F. Damayanti, A. Z. Arifin, and R. Soelaiman, “Pengenalan Citra Wajah menggunakan Metode Two-Dimensional Linear Discriminant,” vol. 5, no. 3, pp. 147–156, 2010.

S. Sinulingga, C. Fatichah, and A. Yuniarti, “Pengenalan Wajah menggunakan Two Dimensional Linear Discriminant Analysis Berbasis Optimasi Feature Fusion Strategy,” JATISI (Jurnal Tek, vol. 3, no. 1, pp. 1–11, 2016, [Online]. Available: http://jurnal.mdp.ac.id/index.php/jatisi/article/view/59

G. Q. Oktagalu Pratamasunu, O. I. Ratu Farisi, and M. Jannah, “Pengenalan Wajah Mahasiswa Universitas Nurul Jadid pada Video menggunakan Metode Haar Cascade dan Deep Learning,” COREAI J. Kecerdasan Buatan, Komputasi dan Teknol. Inf., vol. 1, no. 1, pp. 25–34, 2020, doi: 10.33650/coreai.v1i1.1642.

J. Efendi, M. I. Zul, and W. Yunanto, “Real Time Face Recognition using Eigenface and Viola-Jones Face Detector,” Int. J. Informatics Vis., vol. 1, no. 1, pp. 16–22, 2017, doi: 10.30630/joiv.1.1.15.

R. Robin, A. Handinata, and W. Chandra, “Facial Recognition on System Prototype to Verify Users using Eigenface, Viola-Jones and Haar,” J. Comput. Networks, Archit. High Perform. Comput., vol. 3, no. 2, pp. 213–222, Aug. 2021, doi: 10.47709/cnahpc.v3i2.1058.

R. Wahyusari and B. Haryoko, “Penerapan Algoritma Viola Jones untuk Deteksi Wajah,” J. Maj. Ilm. STTR Cepu, pp. 44–49, 2014, [Online]. Available: https://www.sttrcepu.ac.id/jurnal/index.php/simetris/article/download/24/15

M. Zulfikri, M. Syahrir, and W. Kusuma, “Pengenalan Citra Wajah sebagai Identifier menggunakan Eigenface, Support Vector Machine, dan Haar Cascade Classifier,” J. Millenial, vol. 1, no. 2, pp. 43–52, 2023, [Online]. Available: https://journal.mudaberkarya.id/index.php/JoMI/article/view/73

M. Zulfikri, W. Kusuma, S. Hadi, H. Husain, R. Hammad, and L. Z. A. Mardedi, “Speed Bump System Based on Vehicle Speed using Adaptive Background Subtraction with Haar Cascade Classifier,” Sistemasi, vol. 13, no. 3, p. 1054, 2024, doi: 10.32520/stmsi.v13i3.3921.

M. Zulfikri, S. Hadi, and M. N. Fadli, “Sistem Penegakan Speed Bump berdasarkan Kecepatan Kendaraan pada Malam Hari yang di klasifikasikan Haar Cascade Classifier,” J. Millenial Informatics, vol. 1, no. 1, pp. 1–10, 2023.

M. Zulfikri, K. A. Latif, H. Hairani, A. Ahmad, R. Hammad, and M. Syahrir, “Deteksi dan Estimasi Kecepatan Kendaraan dalam Sistem Pengawasan Lalu Lintas menggunakan Pengolahan Citra,” Techno.Com, vol. 20, no. 3, pp. 455–467, 2021, doi: 10.33633/tc.v20i3.4588.

M. Zulfikri, E. Yudhaningtyas, and R. Rahmadwati, “Sistem Penegakan Speed Bump berdasarkan Kecepatan Kendaraan yang di klasifikasikan Haar Cascade Classifier,” Techno.Com, vol. 18, no. 2, pp. 97–109, 2019, doi: 10.33633/tc.v18i2.2074.




DOI: https://doi.org/10.32520/stmsi.v14i1.4728

Article Metrics

Abstract view : 70 times
PDF - 22 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.