Early Detection of Mental Health Disorders based on Sentiment using Stacking Method

Naufal Maldini, Danang Wahyu Utomo, Rahmadika Putri Tresyani

Abstract


Mental health disorders are a serious and growing global concern, including in Indonesia. This study aims to predict mental health disorders through sentiment analysis using the Stacking Classifier approach, which combines Random Forest, Gradient Boosting Classifier, and Logistic Regression algorithms. The dataset was sourced from various social media platforms, consisting of textual data classified into seven mental health categories, such as depression, anxiety, and personality disorders. The data underwent preprocessing steps, including cleaning, balancing, and dimensionality reduction using the TF-IDF algorithm. The study results indicate that the Stacking Classifier method achieved an accuracy of 95.66%, with a precision of 95.63%, recall of 95.66%, and F1-Score of 95.64%. These results outperform the individual algorithms tested in the research. The findings demonstrate the significant potential of sentiment analysis powered by machine learning for early detection of mental health disorders, making it a valuable tool to enhance diagnosis and intervention in mental health care more effectively.

Keywords


mental health, sentiment analysis, stacking classifier, machine learning, mental health prediction.

Full Text:

PDF

References


L. S. Khoo, M. K. Lim, C. Y. Chong, and R. McNaney, “Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing Approaches,” Sensors, vol. 24, no. 2, p. 348, Jan. 2024, doi: 10.3390/s24020348.

B. Saylam and Ö. D. İncel, “Multitask Learning for Mental Health: Depression, Anxiety, Stress (DAS) Using Wearables,” Diagnostics, vol. 14, no. 5, p. 501, Feb. 2024, doi: 10.3390/diagnostics14050501.

Universitas Gadjah Mada, “Hasil Survei I-NAMHS: Satu dari Tiga Remaja Indonesia Memiliki Masalah Kesehatan Mental.” Accessed: Nov. 07, 2024. [Online]. Available: https://ugm.ac.id/id/berita/23086-hasil-survei-i-namhs-satu-dari-tiga-remaja-indonesia-memiliki-masalah-kesehatan-mental/

World Health Organization, “Mental Health of adolescents.” Accessed: Nov. 07, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/adolescent-mental-health

R. Verma, Nipun, N. Rana, and Dr. R. K. Arora, “Mental Health Prediction using Sentimental Analysis,” Int J Res Appl Sci Eng Technol, vol. 11, no. 12, pp. 1131–1135, Dec. 2023, doi: 10.22214/ijraset.2023.57534.

A. Priyono, M. Shodiq, D. P. Alvinsyah, and S. A. Hidayah, “Metode Random Forest untuk memudahkan Klasifikasi Diagnosis Penyakit Mental,” Jurnal Informatika Medis (J-INFORMED), vol. 2, no. 1, pp. 1–4, Jun. 2024, doi: 10.52060/im.v2i1.2119.

M. Anastasia and V. S. Maulivia, “Metode Pembelajaran Mesin untuk Menilai Data Depresi dan Kesehatan Mental Machine Learning Methods for Assessing Depression and Mental Health Data,” Journal of Information Technology and Computer Science (INTECOMS), vol. 7, no. 3, 2024.

J. Chung and J. Teo, “single Classifier vs. Ensemble Machine Learning Approaches for Mental Health Prediction,” Brain Inform, vol. 10, no. 1, p. 1, Dec. 2023, doi: 10.1186/s40708-022-00180-6.

H. Ogura, Y. Hanada, H. Amano, and M. Kondo, “A Stochastic Model Of Word Occurrences in Hierarchically Structured Written Texts,” SN Appl Sci, vol. 4, no. 3, p. 77, Mar. 2022, doi: 10.1007/s42452-022-04953-w.

R. Suhendra et al., “Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification,” Heca Journal of Applied Sciences, vol. 1, no. 2, pp. 54–61, Sep. 2023, doi: 10.60084/hjas.v1i2.85.

Abdullah-All-Tanvir, I. A. Khandokar, A. K. M. M. Islam, S. Islam, and S. Shatabda, “A Gradient Boosting Classifier for Purchase Intention Prediction of Online Shoppers,” Heliyon, vol. 9, no. 4, p. e15163, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15163.

T. R. Noviandy et al., “Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’s Disease Drug Discovery,” Malacca Pharmaceutics, vol. 1, no. 2, pp. 48–54, Jul. 2023, doi: 10.60084/mp.v1i2.60.

A. S. Hussein, T. Li, C. W. Yohannese, and K. Bashir, “A-SMOTE: A New Preprocessing Approach for Highly Imbalanced Datasets by Improving SMOTE,” International Journal of Computational Intelligence Systems, vol. 12, no. 2, p. 1412, 2019, doi: 10.2991/ijcis.d.191114.002.

P. C. Reddy, R. M. S. Chandra, P. Vadiraj, M. A. Reddy, T. R. Mahesh, and G. Sindhu Madhuri, “Detection of Plant Leaf-based Diseases using Machine Learning Approach,” in 2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), IEEE, Dec. 2021, pp. 1–4. doi: 10.1109/CSITSS54238.2021.9683020.

M. Vedechkina and J. Holmes, “Cognitive Difficulties Following Adversity are not Related to Mental Health: Findings from the ABCD Study,” Dev Psychopathol, vol. 36, no. 4, pp. 1876–1889, Oct. 2024, doi: 10.1017/S0954579423001220.

E. S. Mohamed, T. A. Naqishbandi, S. A. C. Bukhari, I. Rauf, V. Sawrikar, and A. Hussain, “A Hybrid Mental Health Prediction Model using Support Vector Machine, Multilayer Perceptron, and Random Forest Algorithms,” Healthcare Analytics, vol. 3, p. 100185, Nov. 2023, doi: 10.1016/j.health.2023.100185.

A. F. Hidayatullah, A. A. Fadila, K. P. Juwairi, and R. A. Nayoan, “Identifikasi Konten Kasar pada Tweet Bahasa Indonesia,” Jurnal Linguistik Komputasional (JLK), vol. 2, no. 1, p. 1, Mar. 2019, doi: 10.26418/jlk.v2i1.15.

S. Clara et al., “Implementasi Seleksi Fitur pada Algoritma Klasifikasi Machine Learning untuk Prediksi Penghasilan pada Adult Income Dataset,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, 2021.

K. Vaishnavi, U. N. Kamath, B. Ashwath Rao, and N. V Subba Reddy, “Predicting Mental Health Illness using Machine Learning Algorithms,” J Phys Conf Ser, vol. 2161, no. 1, p. 012021, Jan. 2022, doi: 10.1088/1742-6596/2161/1/012021.

H. Zhou, Y. Xin, and S. Li, “A Diabetes Prediction Model based on Boruta Feature Selection and Ensemble Learning,” BMC Bioinformatics, vol. 24, no. 1, p. 224, Jun. 2023, doi: 10.1186/s12859-023-05300-5.

A. Ghourabi and M. Alohaly, “Enhancing Spam Message Classification and Detection using Transformer-based Embedding and Ensemble Learning,” Sensors, vol. 23, no. 8, p. 3861, Apr. 2023, doi: 10.3390/s23083861.

G. D. Sepbriant and D. W. Utomo, “Ensemble Learning pada Kategorisasi Produk E-Commerce menggunakan Teknik Boosting,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 9, no. 2, pp. 123–133, May 2024, doi: 10.14421/jiska.2024.9.2.123-133.

A. P. Tirtopangarsa and W. Maharani, “Sentiment Analysis of Depression Detection on Twitter Social Media Users using the K-Nearest Neighbor Method Analisis Sentimen Deteksi Depresi pada Pengguna Media Sosial Twitter dengan menggunakan Metode K-Nearest Neighbor,” pp. 13–2021, 2021.

F. Astuti and R. Taufan, “Sentiment Analysis of Covid-19 Vaccination on Twitter using Classification Algorithms based on PSO,” SISTEMASI, vol. 11, no. 2, p. 364, May 2022, doi: 10.32520/stmsi.v11i2.1737.




DOI: https://doi.org/10.32520/stmsi.v14i1.4842

Article Metrics

Abstract view : 91 times
PDF - 32 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.