Classification using Convolutional Neural Network Algorithms for Pest Detection in Water Spinach
Abstract
Keywords
Full Text:
PDFReferences
A. S. Paymode and V. B. Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,” Artif. Intell. Agric., vol. 6, pp. 23–33, 2022, doi: 10.1016/j.aiia.2021.12.002.
B. Prasetio, "Budi Daya Sayuran Organik di Pot",. Yogyakarta: Lily Publisher, 2013.
V. Srivastava and A. Khunteta, “Comparative Analysis of Leaf Classification and Recognition by Different SVM Classifiers,” Proc. Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2018, no. Icirca, pp. 626–631, 2018, doi: 10.1109/ICIRCA.2018.8596813.
I. A. Saidi, R. Azara, and E. Yanti, "Buku Ajar Pasca Panen dan Pengolahan Sayuran Daun", diterbitkan oleh Jl . Mojopahit 666 B Sidoarjo ISBN : 978-623-6292-21-1 Copyright © 2021 . Authors All rights reserved. 2021.
A. KP and J.Anitha, “Plant Disease Classification using Deep,” Proc. Int. Conf. Comput. Intell. Sustain. Eng. Solut. CISES 2022, no. May, pp. 512–518, 2022, doi: 10.1109/CISES54857.2022.9844352.
J. Singh and H. Kaur, "Plant Disease Detection based on Region-based Segmentation and KNN classifier", vol. 30. Springer International Publishing, 2019. doi: 10.1007/978-3-030-00665-5_154.
H. Nurrani, A. K. Nugroho, and S. Heranurweni, “a,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, pp. 168–178, 2023, doi: 10.29207/resti.v7i1.4715.
V. Kumar, H. Arora, Harsh, and J. Sisodia, “ResNet-based Approach for Detection and Classification of Plant Leaf Diseases,” Proc. Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2020, no. Icesc, pp. 495–502, 2020, doi: 10.1109/ICESC48915.2020.9155585.
Y. Xu, X. Cong, Y. Zhai, Z. Gao, and H. Yu, “An Automatic Classification Grading of Spinach Seedlings Water Stress based on N-MobileNetXt,” Intell. Autom. Soft Comput., vol. 37, no. 3, pp. 3019–3037, 2023, doi: 10.32604/iasc.2023.040330.
S. Uddin, I. Haque, H. Lu, M. A. Moni, and E. Gide, “Comparative Performance Analysis of K-Nearest neighbour (KNN) Algorithm and its Different Variants for Disease Prediction,” Sci. Rep., vol. 12, no. 1, pp. 1–11, 2022, doi: 10.1038/s41598-022-10358-x.
S. Vallabhajosyula, V. Sistla, and V. K. K. Kolli, “Transfer Learning-based Deep Ensemble Neural Network for Plant Leaf Disease Detection,” J. Plant Dis. Prot., vol. 129, no. 3, pp. 545–558, 2022, doi: 10.1007/s41348-021-00465-8.
M. Islam, N. J. Ria, J. F. Ani, A. K. M. Masum, S. Abujar, and S. A. Hossain, “Deep Learning based Classification System for Recognizing Local Spinach,” Lect. Notes Networks Syst., vol. 249, pp. 1–14, 2022, doi: 10.1007/978-3-030-85365-5_1.
S. Sennan, D. Pandey, Y. Alotaibi, and S. Alghamdi, “A Novel Convolutional Neural Networks based Spinach Classification and Recognition System,” Comput. Mater. Contin., vol. 73, no. 1, pp. 343–361, 2022, doi: 10.32604/cmc.2022.028334.
K. Koyama, M. Tanaka, B. H. Cho, Y. Yoshikawa, and S. Koseki, “Predicting Sensory Evaluation of Spinach Freshness ising Machine Learning Model and Digital Images,” PLoS One, vol. 16, no. 3 March, pp. 1–16, 2021, doi: 10.1371/journal.pone.0248769.
U. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman, “Comparison of Convolution Neural Networks for Smartphone Image based Real Time Classification of Citrus Leaf Disease,” Comput. Electron. Agric., vol. 177, no. January, p. 105661, 2020, doi: 10.1016/j.compag.2020.105661.
D. Sugiarto, J. Siswantoro, M. F. Naufal, and B. Idrus, “Mobile Application for Medicinal Plants Recognition from Leaf Image using Convolutional Neural Network,” Indones. J. Inf. Syst., vol. 5, no. 2, pp. 43–56, 2023, doi: 10.24002/ijis.v5i2.6633.
S. U. Habiba and M. K. Islam, “Tomato Plant Diseases Classification using Deep Learning based Classifier from Leaves Images,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., pp. 82–86, 2021, doi: 10.1109/ICICT4SD50815.2021.9396883.
S. S. Chouhan, Ajay Kaul, and U. P. Singh, “A Deep Learning Approach for The Classification of Diseased Plant Leaf Images,” Int. Conf. Commun. Electron. Syst. (ICCES 2019), vol. 194, no. Icces, pp. 701–710, 2019, doi: 10.1007/978-981-15-5971-6_73.
L. Rodrigues, S. A. Magalhães, D. Q. da Silva, F. N. dos Santos, and M. Cunha, “Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification In Vegetable Crops,” Agronomy, vol. 13, no. 2, pp. 1–19, 2023, doi: 10.3390/agronomy13020463.
A. Sinha and R. Singh Shekhawat, “A Novel Image Classification Technique for Spot and Blight Diseases in Plant Leaves,” Imaging Sci. J., vol. 68, no. 4, pp. 225–239, 2020, doi: 10.1080/13682199.2020.1865652.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
T. Bezdan and N. Bačanin Džakula, “Convolutional Neural Network Layers and Architectures” no. July, pp. 445–451, 2019, doi: 10.15308/sinteza-2019-445-451.
C. Manliguez, “Generalized Confusion Matrix for Multiple Classes Generalized Confusion Matrix for Multiple Classes The Total Numbers of False Negative ( TFN ), False Positive ( TFP ), and True Negative ( TTN ) for Each Class I will be Calculated based on the Generalized,” no. November, pp. 5–7, 2016, doi: 10.13140/RG.2.2.31150.51523.
DOI: https://doi.org/10.32520/stmsi.v14i1.4871
Article Metrics
Abstract view : 62 timesPDF - 25 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.