Implementation of the Random Forest Algorithm with Optuna Optimization in Lung Cancer Classification
Abstract
Keywords
Full Text:
PDFReferences
S. Alfarisa, E. Mitra, and S. Wahyuni, “Karakteristik Pasien Kanker Paru di RSUP Dr. M. Djamil Padang Tahun 2021,” SCI. J., vol. 2, no. 6, pp. 141–149, 2023, doi: 10.56260/sciena.v2i6.116.
Hajiar Yuliana, “Hyperparameter Optimization of Random Forest for 5G Coverage Prediction,” Bul. Pos dan Telekomun., vol. 22, no. 1, pp. 75–90, 2024, doi: 10.17933/bpostel.v22i1.390.
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: a Next-Generation Hyperparameter Optimization Framework,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 2623–2631.
S. Chintakindi, A. Alsamhan, M. H. Abidi, and M. P. Kumar, “Annealing of Monel 400 Alloy using Principal Component Analysis, Hyper-Parameter Optimization, Machine Learning Techniques, and Multi-Objective Particle Swarm Optimization,” Int. J. Comput. Intell. Syst., vol. 15, no. 1, 2022, doi: 10.1007/s44196-022-00070-z.
R. B. Sinaga, D. Widiyanto, and B. T. Wahyono, “Deteksi Dini Penyakit Kanker Paru dengan Gabungan Algoritma Adaboost dan Random Forest,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 1–10, 2022, [Online]. Available: https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
B. F. Sitanggang and P. Sitompul, “Deteksi Awal Kelangsungan Hidup Pasien Gagal Jantung menggunakan Machine Learning Metode Random Forest,” Innov. J. Soc. Sci. …, vol. 4, pp. 3347–3357, 2024, [Online]. Available: http://j-innovative.org/index.php/Innovative/article/view/8189%0Ahttps://j-innovative.org/index.php/Innovative/article/download/8189/6657
D. Juliani and M. Soleh, “Implementasi Machine Learning untuk Klasifikasi Penyakit Kanker Paru menggunakan Metode Naïve Bayes dengan Tambahan Fitur Chatbot ( Implementation of Machine Learning for Lung Cancer Classification using Naïve Bayes Method with Additional Chatbot Features,” 2020.
L. Sari, A. Romadloni, and R. Listyaningrum, “Penerapan Data Mining dalam Analisis Prediksi Kanker Paru menggunakan Algoritma Random Forest,” Infotekmesin, vol. 14, no. 1, pp. 155–162, 2023, doi: 10.35970/infotekmesin.v14i1.1751.
S. Hanifi, A. Cammarono, and H. Zare-Behtash, “Advanced Hyperparameter Optimization of Deep Learning Models for Wind Power Prediction,” Renew. Energy, vol. 221, no. November 2023, p. 119700, 2024, doi: 10.1016/j.renene.2023.119700.
M. Sipper, “High Per Parameter: A Large-Scale Study of Hyperparameter Tuning for Machine Learning Algorithms,” Algorithms, vol. 15, no. 9, 2022, doi: 10.3390/a15090315.
M. Banurea, D. Betaria Hutagaol, and O. Sihombing, “Klasifikasi Penyakit Stunting dengan menggunakan Algoritma Support Vector Machine dan Random Forest,” J. TEKINKOM, vol. 6, no. 2, pp. 540–549, 2023, doi: 10.37600/tekinkom.v6i2.927.
Jan Melvin Ayu Soraya Dachi and Pardomuan Sitompul, “Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit,” J. Ris. Rumpun Mat. Dan Ilmu Pengetah. Alam, vol. 2, no. 2, pp. 87–103, 2023, doi: 10.55606/jurrimipa.v2i2.1470.
J. Brandt and E. Lanzén, “A Comparative Review of SMOTE and ADASYN in Imbalanced Data Classification,” 2021, p. 42, 2020, [Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1519153
M. Schonlau and R. Y. Zou, “The Random Forest Algorithm for Statistical Learning,” Stata J., vol. 20, no. 1, pp. 3–29, 2020, doi: 10.1177/1536867X20909688.
T. Kurniawan, L. Hermawanti, and A. N. Safriandono, “Interpretable Machine Learning with SHAP and XGBoost for Lung Cancer Prediction Insights,” vol. 8, no. 2, pp. 296–303, 2024.
DOI: https://doi.org/10.32520/stmsi.v14i2.4877
Article Metrics
Abstract view : 185 timesPDF - 56 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.