Public Sentiment Analysis on TikTok about Tapera Policy using Random Forest Classifier

Isnaini Muhandhis, Alven Safik Ritonga

Abstract


At the beginning of 2024, the Tapera policy proposed by the government sparked widespread public debate, resulting in both pros and cons. To improve the quality of public services, it is crucial for the government to evaluate policies to align with the needs and expectations of the community. This study aims to analyze public sentiment on the social media platform TikTok regarding the Tapera policy. Comment data was collected from several TikTok videos discussing the Tapera policy with high view counts. These videos received various responses in the form of comments, expressing positive, neutral, and negative sentiments about Tapera. A total of 5,036 comments were successfully scraped. The Random Forest Classifier was used for sentiment classification. This method was chosen for its ability to maintain high predictive accuracy, minimize overfitting, and perform effectively in classification tasks. The study results showed that negative sentiment dominated TikTok users' opinions, accounting for 82%, followed by neutral sentiment at 10% and positive sentiment at 8%. Many expressed disapproval for various reasons, including concerns about potential corruption, the ineffectiveness of contributions due to inflation, and the policy being burdensome amid a sluggish economy. Neutral sentiment was dominated by questions related to Tapera, such as the amount of Tapera deductions and whether participation is mandatory for those who already own a house. Positive sentiments expressed support for the Tapera policy and willingness to pay the contributions. However, the proportion of supporters of this program was significantly smaller than those opposing it. The training results of the classification model using the Random Forest Classifier achieved an accuracy of 89%. The highest F1-score for detecting negative sentiment was 94%, while the F1-score for detecting neutral sentiment was 17% and for positive sentiment, it was 32%. This disparity is due to the dataset composition being dominated by negative sentiment. The proportion of sentiment significantly influences the training of the classification model. A balanced proportion for each sentiment would enable the model to better learn and recognize the words frequently associated with each sentiment.

Keywords


corruption, decision tree, social media, negative, positive

Full Text:

PDF

References


H. G. Putra, E. Fahmi, and K. Taruc, “Tabungan Perumahan Rakyat (Tapera) dan Penerapannya di DKI Jakarta,” Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, vol. 3, no. 2, pp. 321–332, 2019.

Y. M. De, “Imam dan Dialog Sosialnya (Analisis Kritis Program TAPERA ‘Tabungan Perumahan Rakyat’ bagi Kehidupan Umat di Paroki Riam Batang Kalimantan Tengah),” Jurnal Pendidikan Agama dan Teologi, vol. 2, no. 3, pp. 57–73, 2024.

E. Febriyani and H. Februariyanti, “Analisis Sentimen terhadap Program Kampus Merdeka menggunakan Algoritma Naive Bayes Classifier di Twitter,” Jurnal Tekno Kompak, vol. 17, no. 1, pp. 25–38, 2023.

D. Pramana, M. Afdal, M. Mustakim, and I. Permana, “Analisis Sentimen terhadap Pemindahan Ibu Kota Negara menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023.

J. Singh and P. Tripathi, “Sentiment Analysis of Twitter Data by Making use of SVM, Random Forest and Decision Tree Algorithm,” in 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), 2021, pp. 193–198.

S. Khomsah, “Sentiment Analysis on Youtube Comments using Word2vec and Random Forest,” Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 1, pp. 61–72, 2021.

D. Alita, S. Priyanta, and N. Rokhman, “Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter,” Journal of Information Systems Engineering and Business Intelligence, vol. 5, no. 2, pp. 100–109, 2019.

P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis using SVM with Normalized Poly Kernel,” J. Inf. Syst. Eng. Bus. Intell, vol. 6, no. 2, p. 112, 2020.

M. Samantri and others, “Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen terhadap Kebijakan Pemerintah Indonesia terkait Kenaikan Harga BBM Tahun 2022,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, pp. 1–9, 2024.

S. Marlistiana and R. Widayanti, “Analisis Sentimen terhadap Kebijakan Pemerintah tentang ditutupnya Fitur Belanja pada Tiktok dengan menggunakan Na"ive Bayes Classifier dan Random Forest Classifier,” J-Com (Journal of Computer), vol. 4, no. 1, pp. 76–86, 2024.

E. D. Harahap and R. Kurniawan, “Analisis Sentimen Komentar terhadap Kebijakan Pemerintah Mengenai Tabungan Perumahan Rakyat (TAPERA) pada Aplikasi X menggunakan Metode Na"ive Bayes,” Jurnal Teknik Informatika UNIKA Santo Thomas, pp. 166–175, 2024.

A. M. Rizqiyah and I. K. D. Nuryana, “Analisis Sentimen Masyarakat terhadap Kebijakan Iuran Tabungan Perumahan Rakyat (Tapera) pada Platform X menggunakan Algoritma Na"ive Bayes Classifier dan Support Vector Machine,” Journal of Emerging Information System and Business Intelligence (JEISBI), vol. 5, no. 3, pp. 298–306, 2024.

C. Epesus, S. Paramita, and others, “Kritik Akun TikTok@ Xeronav terhadap Isu Sosial Politik,” Kiwari, vol. 1, no. 1, pp. 1–10, 2022.

S. Saadah et al., “Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 648–655, 2022.

Y. A. Jatmiko, S. Padmadisastra, and A. Chadidjah, “Analisis Perbandingan Kinerja Cart Konvensional, Bagging dan Random Forest pada Klasifikasi Objek: Hasil dari Dua Simulasi,” Media Statistika, vol. 12, no. 1, pp. 1–12, 2019.

A. Safira, A. S. Masyarakat…, and F. N. Hasan, “Analisis Sentimen Masyarakat terhadap Paylater menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem Informasi, vol. 5, no. 1, 2023.

H. C. Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 4, pp. 1702–1708, 2022.

C. Ariningdyah, D. Lasonda, and F. R. D. Miarsa, “Analisis Yuridis Penerapan Tabungan Perumahan Rakyat (Tapera) dalam Perspektif Asas Keadilan,” Innovative: Journal Of Social Science Research, vol. 4, no. 3, pp. 18410–18424, 2024.




DOI: https://doi.org/10.32520/stmsi.v14i1.4878

Article Metrics

Abstract view : 49 times
PDF - 13 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.