Performance Comparison of LSTM and GRU Methods in Predicting Cryptocurrency Closing Prices

Rayhan Satria Andromeda, Nurul Anisa Sri Winarsih

Abstract


Technological advancements have increased interest in cryptocurrency investments, particularly Bitcoin and Ethereum, despite the high price volatility that remains a major challenge for investors. This study aims to predict cryptocurrency price fluctuations using Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, both of which are well-regarded for time series data analysis. Model performance was evaluated using parameters such as learning rate, timestamps, batch size, number of epochs, and Early Stopping callbacks. The evaluation metrics included Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and the coefficient of determination (R²). The results indicate that the GRU model outperforms LSTM in predicting cryptocurrency prices. For Bitcoin data, GRU achieved a MAPE of 0.38%, RMSE of 343.02, and R² of 0.9988, surpassing LSTM, which recorded a MAPE of 0.41%, RMSE of 356.01, and R² of 0.9987. Similarly, for Ethereum data, GRU achieved a MAPE of 0.45%, RMSE of 20.89, and R² of 0.9983, outperforming LSTM with a MAPE of 0.49%, RMSE of 22.29, and R² of 0.9980. These findings demonstrate that GRU is more accurate and efficient in modeling cryptocurrency price patterns, offering strategic opportunities for investors to make more informed decisions in navigating the complexities of the cryptocurrency market.

Full Text:

PDF

References


F. Faidah, “Pengaruh Literasi Keuangan dan Faktor Demografi terhadap Minat Investasi Mahasiswa,” JABE (Journal Appl. Bus. Econ., vol. 5, no. 3, p. 251, 2019, doi: 10.30998/jabe.v5i3.3484.

S. Alonso-Monsalve, A. L. Suárez-Cetrulo, A. Cervantes, and D. Quintana, “Convolution on Neural Networks for High-Frequency Trend Prediction of Cryptocurrency Exchange Rates using Technical Indicators,” Expert Syst. Appl., vol. 149, p. 113250, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113250.

M. . R. Rere, Hariyanto, and Rozi, “Studi Prediksi Harga Bitcoin menggunakan Recurrent Neural Network,” Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 6, no. 1, pp. 149–155, 2022.

M. W. P. Aldi, Jondri, and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network Untuk Prediksi Harga Bitcoin,” E-Proceeding Eng., vol. 5, no. 2, pp. 3548–3555, 2018.

I. Akil and I. Chaidir, “Prediksi Harga Saham Twitter dengan Long Short-Term Memory Recurrent Neural Network,” INTI Nusa Mandiri, vol. 17, no. 1, pp. 1–7, 2022, doi: 10.33480/inti.v17i1.3277.

R. A. Pangaribuan, N. U. Rahmi, and U. P. Indonesia, “Risk and Return Investment Analysis on Bitcoin, Ethereum, Dogecoin, Litecoin, XRP and LQ45 Share after the Covid-19 Pandemic Analisis Risk dan Return Investasi pada Bitcoin, Ethereum, Dogecoin, Litecoin, XRP dan Saham Saham LQ45 setelah Pandemi Covid-19,” Manag. Stud. Entrep. J., vol. 4, no. 3, pp. 2930–2941, 2023, [Online]. Available: http://journal.yrpipku.com/index.php/msej

J. Homepage, C. Alkahfi, A. Kurnia, and A. Saefuddin, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Performance Comparison of RNN-based Models in Forecasting Indonesian Economic and Financial Data Perbandingan Kinerja Model berbasis RNN pada Peramalan Data Ekonomi dan Keuangan Indonesia,” vol. 4, no. October, pp. 1235–1243, 2024.

K. Kusnawi, M. A. F. Eka Putra, and J. Ipmawati, “Price Prediction of basic Material using ARIMA Forecasting Method Through Open Data Sumedang District,” Sistemasi, vol. 12, no. 2, p. 293, 2023, doi: 10.32520/stmsi.v12i2.2282.

K. Ramani, M. Jahnavi, P. Reddy, P. V. Chakravarthi, and P. Meghanath, Prediction of Bitcoin Price through LSTM, ARIMA, XGBoost, Prophet and Sentiment Analysis on Dynamic Streaming Data. 2023. doi: 10.1109/ICACCS57279.2023.10113014.

S. Park and J.-S. Yang, “Interpretable Deep Learning LSTM Model for Intelligent Economic Decision-Making,” Knowledge-based Syst., vol. 248, p. 108907, 2022, doi: https://doi.org/10.1016/j.knosys.2022.108907.

M. A. D. Suyudi, E. C. Djamal, and A. Maspupah, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2019.

S. Samsudin, A. M. Harahap, and S. Fitrie, “Implementasi Gated Recurrent Unit (Gru) untuk Prediksi Harga Saham Bank Konvensional di Indonesia,” JISTech (Journal Islam. Sci. Technol., vol. 6, no. 2, pp. 42–49, 2021, doi: 10.30829/jistech.v6i2.11058.

W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. ETP, “Optimasi Deep Learning untuk Prediksi Saham di,” … (Jurnal Edukasi dan …, vol. 7, no. 2, pp. 133–140, 2021, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/47411

M.-L. Shen, C.-F. Lee, H.-H. Liu, P.-Y. Chang, and C.-H. Yang, “Effective Multinational Trade Forecasting using Lstm Recurrent Neural Network,” Expert Syst. Appl., vol. 182, p. 115199, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115199.

V. Riandaru Prasetyo et al., “Prediksi Harga Emas berdasarkan Data gold.org menggunakan Metode Long Short Term Memory Gold Price Prediction based on Gold.org Data using the Long Short Term Memory Method,” vol. 11, no. September, pp. 623–629, 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

J. Cao, Z. Li, and J. Li, “Financial Time Series Forecasting Model Based on CEEMDAN and LSTM,” Phys. A Stat. Mech. its Appl., vol. 519, pp. 127–139, 2019, doi: https://doi.org/10.1016/j.physa.2018.11.061.

K. Sofi, A. S. Sunge, S. R. Riady, and A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, Lstm, Dan Gru dalam memprediksi Harga Saham dengan Model Time Series,” Seminastika, vol. 3, no. 1, pp. 39–46, 2021, doi: 10.47002/seminastika.v3i1.275.

M. F. Rizkilloh and S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.

W. Hastomo, Aminudin, and A. S. B. Karno, “Kemampuan Long Short Term Memory Machine Learning dalam Proyeksi Saham Bank BRI Tbk,” Univ. Gunadarma Jl. Margonda Raya, vol. 4, no. 1, p. 16424, 2020.

M. R. Pahlevi, “Prediksi Harga Forex menggunakan Algoritma Long Short-Term Memory,” Jnanaloka, pp. 69–76, 2023, doi: 10.36802/jnanaloka.2022.v3-no2-69-76.

N. G. Ramadhan, N. A. F. Tanjung, and F. D. Adhinata, “Implementation of LSTM-RNN for Bitcoin Prediction,” Ind. J. Comput., vol. 6, no. 3, pp. 17–24, 2021, doi: 10.34818/indojc.2021.6.3.592.

N. W. Meri Aryati, I. K. A. G. Wiguna, N. W. S. Putri, I. K. K. Widiartha, and N. L. W. S. R. Ginantra, “Komparasi Metode LSTM dan GRU dalam memprediksi Harga Saham,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1131, 2024, doi: 10.30865/mib.v8i2.7342.

M. Amos, “Perbandingan Algoritma Linear Regression, Neural Network, Deep Learning, dan K-Nearest Neighbor (K-NN) untuk Prediksi Harga Bitcoin,” JSI J. Sist. Inf., vol. 14, no. 1, pp. 2450–2464, 2022, doi: 10.18495/jsi.v14i1.16561.




DOI: https://doi.org/10.32520/stmsi.v14i1.4880

Article Metrics

Abstract view : 74 times
PDF - 24 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.