Performance Comparison of LSTM and GRU Methods in Predicting Cryptocurrency Closing Prices
Abstract
Full Text:
PDFReferences
F. Faidah, “Pengaruh Literasi Keuangan dan Faktor Demografi terhadap Minat Investasi Mahasiswa,” JABE (Journal Appl. Bus. Econ., vol. 5, no. 3, p. 251, 2019, doi: 10.30998/jabe.v5i3.3484.
S. Alonso-Monsalve, A. L. Suárez-Cetrulo, A. Cervantes, and D. Quintana, “Convolution on Neural Networks for High-Frequency Trend Prediction of Cryptocurrency Exchange Rates using Technical Indicators,” Expert Syst. Appl., vol. 149, p. 113250, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113250.
M. . R. Rere, Hariyanto, and Rozi, “Studi Prediksi Harga Bitcoin menggunakan Recurrent Neural Network,” Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 6, no. 1, pp. 149–155, 2022.
M. W. P. Aldi, Jondri, and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network Untuk Prediksi Harga Bitcoin,” E-Proceeding Eng., vol. 5, no. 2, pp. 3548–3555, 2018.
I. Akil and I. Chaidir, “Prediksi Harga Saham Twitter dengan Long Short-Term Memory Recurrent Neural Network,” INTI Nusa Mandiri, vol. 17, no. 1, pp. 1–7, 2022, doi: 10.33480/inti.v17i1.3277.
R. A. Pangaribuan, N. U. Rahmi, and U. P. Indonesia, “Risk and Return Investment Analysis on Bitcoin, Ethereum, Dogecoin, Litecoin, XRP and LQ45 Share after the Covid-19 Pandemic Analisis Risk dan Return Investasi pada Bitcoin, Ethereum, Dogecoin, Litecoin, XRP dan Saham Saham LQ45 setelah Pandemi Covid-19,” Manag. Stud. Entrep. J., vol. 4, no. 3, pp. 2930–2941, 2023, [Online]. Available: http://journal.yrpipku.com/index.php/msej
J. Homepage, C. Alkahfi, A. Kurnia, and A. Saefuddin, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Performance Comparison of RNN-based Models in Forecasting Indonesian Economic and Financial Data Perbandingan Kinerja Model berbasis RNN pada Peramalan Data Ekonomi dan Keuangan Indonesia,” vol. 4, no. October, pp. 1235–1243, 2024.
K. Kusnawi, M. A. F. Eka Putra, and J. Ipmawati, “Price Prediction of basic Material using ARIMA Forecasting Method Through Open Data Sumedang District,” Sistemasi, vol. 12, no. 2, p. 293, 2023, doi: 10.32520/stmsi.v12i2.2282.
K. Ramani, M. Jahnavi, P. Reddy, P. V. Chakravarthi, and P. Meghanath, Prediction of Bitcoin Price through LSTM, ARIMA, XGBoost, Prophet and Sentiment Analysis on Dynamic Streaming Data. 2023. doi: 10.1109/ICACCS57279.2023.10113014.
S. Park and J.-S. Yang, “Interpretable Deep Learning LSTM Model for Intelligent Economic Decision-Making,” Knowledge-based Syst., vol. 248, p. 108907, 2022, doi: https://doi.org/10.1016/j.knosys.2022.108907.
M. A. D. Suyudi, E. C. Djamal, and A. Maspupah, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2019.
S. Samsudin, A. M. Harahap, and S. Fitrie, “Implementasi Gated Recurrent Unit (Gru) untuk Prediksi Harga Saham Bank Konvensional di Indonesia,” JISTech (Journal Islam. Sci. Technol., vol. 6, no. 2, pp. 42–49, 2021, doi: 10.30829/jistech.v6i2.11058.
W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. ETP, “Optimasi Deep Learning untuk Prediksi Saham di,” … (Jurnal Edukasi dan …, vol. 7, no. 2, pp. 133–140, 2021, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/47411
M.-L. Shen, C.-F. Lee, H.-H. Liu, P.-Y. Chang, and C.-H. Yang, “Effective Multinational Trade Forecasting using Lstm Recurrent Neural Network,” Expert Syst. Appl., vol. 182, p. 115199, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115199.
V. Riandaru Prasetyo et al., “Prediksi Harga Emas berdasarkan Data gold.org menggunakan Metode Long Short Term Memory Gold Price Prediction based on Gold.org Data using the Long Short Term Memory Method,” vol. 11, no. September, pp. 623–629, 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
J. Cao, Z. Li, and J. Li, “Financial Time Series Forecasting Model Based on CEEMDAN and LSTM,” Phys. A Stat. Mech. its Appl., vol. 519, pp. 127–139, 2019, doi: https://doi.org/10.1016/j.physa.2018.11.061.
K. Sofi, A. S. Sunge, S. R. Riady, and A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, Lstm, Dan Gru dalam memprediksi Harga Saham dengan Model Time Series,” Seminastika, vol. 3, no. 1, pp. 39–46, 2021, doi: 10.47002/seminastika.v3i1.275.
M. F. Rizkilloh and S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.
W. Hastomo, Aminudin, and A. S. B. Karno, “Kemampuan Long Short Term Memory Machine Learning dalam Proyeksi Saham Bank BRI Tbk,” Univ. Gunadarma Jl. Margonda Raya, vol. 4, no. 1, p. 16424, 2020.
M. R. Pahlevi, “Prediksi Harga Forex menggunakan Algoritma Long Short-Term Memory,” Jnanaloka, pp. 69–76, 2023, doi: 10.36802/jnanaloka.2022.v3-no2-69-76.
N. G. Ramadhan, N. A. F. Tanjung, and F. D. Adhinata, “Implementation of LSTM-RNN for Bitcoin Prediction,” Ind. J. Comput., vol. 6, no. 3, pp. 17–24, 2021, doi: 10.34818/indojc.2021.6.3.592.
N. W. Meri Aryati, I. K. A. G. Wiguna, N. W. S. Putri, I. K. K. Widiartha, and N. L. W. S. R. Ginantra, “Komparasi Metode LSTM dan GRU dalam memprediksi Harga Saham,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1131, 2024, doi: 10.30865/mib.v8i2.7342.
M. Amos, “Perbandingan Algoritma Linear Regression, Neural Network, Deep Learning, dan K-Nearest Neighbor (K-NN) untuk Prediksi Harga Bitcoin,” JSI J. Sist. Inf., vol. 14, no. 1, pp. 2450–2464, 2022, doi: 10.18495/jsi.v14i1.16561.
DOI: https://doi.org/10.32520/stmsi.v14i1.4880
Article Metrics
Abstract view : 74 timesPDF - 24 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.