Mapping Machine Learning Trends in Chemistry Research using LLM with Multi-Turn Prompting
Abstract
Keywords
Full Text:
PDFReferences
A. Alanazi, “Using Machine Learning for Healthcare Challenges and Opportunities,” Inform Med Unlocked, vol. 30, p. 100924, Jan. 2022, doi: 10.1016/J.IMU.2022.100924.
P. Vats and K. Samdani, “Study on Machine Learning Techniques in Financial Markets,” 2019 IEEE International Conference on System, Computation, Automation and Networking, ICSCAN 2019, Mar. 2019, doi: 10.1109/ICSCAN.2019.8878741.
A. Soni, D. Dharmacharya, A. Pal, V. Kumar Srivastava, R. N. Shaw, and A. Ghosh, “Design of a Machine Learning-based Self-Driving Car,” Studies in Computational Intelligence, vol. 960, pp. 139–151, 2021, doi: 10.1007/978-981-16-0598-7_11.
X. Wan et al., “Machine Learning Paves the Way for High Entropy Compounds Exploration: Challenges, Progress, and Outlook,” Advanced Materials, p. 2305192, 2023, doi: 10.1002/ADMA.202305192.
S. Dara, S. Dhamercherla, S. S. Jadav, C. M. Babu, and M. J. Ahsan, “Machine Learning in Drug Discovery: A Review,” Artificial Intelligence Review 2021 55:3, vol. 55, no. 3, pp. 1947–1999, Aug. 2021, doi: 10.1007/S10462-021-10058-4.
N. Fred and I. O. Temkin, “A Systematic Literature Review on the use of Machine Learning in Software Engineering,” Jun. 2024, Accessed: Jan. 28, 2025. [Online]. Available: https://arxiv.org/abs/2406.13877v1
K. Kolasa, B. Admassu, M. Hołownia-Voloskova, K. J. Kędzior, J. E. Poirrier, and S. Perni, “Systematic Reviews of Machine Learning in Healthcare: A Literature Review,” Expert Rev Pharmacoecon Outcomes Res, vol. 24, no. 1, pp. 63–115, Jan. 2024, doi: 10.1080/14737167.2023.2279107.
Y. F. Shi et al., “Machine Learning for Chemistry: Basics and Applications,” Engineering, vol. 27, pp. 70–83, Aug. 2023, doi: 10.1016/J.ENG.2023.04.013.
J. Sawicki, M. Ganzha, and M. Paprzycki, “The State of the Art of Natural Language Processing—A Systematic Automated Review of Nlp Literature using Nlp Techniques,” Data Intell, vol. 5, no. 3, pp. 707–749, Aug. 2023, doi: 10.1162/DINT_A_00213.
T. Labruna, J. A. Campos, and G. Azkune, “When to Retrieve: Teaching Llms to Utilize Information Retrieval Effectively,” Apr. 2024, Accessed: Nov. 07, 2024. [Online]. Available: https://arxiv.org/abs/2404.19705v2
N. R. Ruchitaa Raj, S. Nandhakumar Raj, and M. Vijayalakshmi, “Web Scrapping Tools and Techniques: A Brief Survey,” 2023 International Conference on Innovative Trends in Information Technology, ICITIIT 2023, 2023, doi: 10.1109/ICITIIT57246.2023.10068666.
H. Raja et al., “Using Large Language Models to Automate Category and Trend Analysis of Scientific Articles: an Application in Ophthalmology,” Aug. 2023, Accessed: Jan. 09, 2025. [Online]. Available: https://arxiv.org/abs/2308.16688v1
Y. (YJ) Chae and T. Davidson, “Large Language Models for Text Classification: from Zero-Shot Learning to Instruction-Tuning,” Aug. 2023, doi: 10.31235/OSF.IO/STHWK.
Z. Yi, J. Ouyang, Y. Liu, T. Liao, Z. Xu, and Y. Shen, “A Survey on Recent Advances in Llm-based Multi-Turn Dialogue Systems,” Feb. 2024, Accessed: Jan. 09, 2025. [Online]. Available: https://arxiv.org/abs/2402.18013v1
B. R. Kowalski and C. F. Bender, “Pattern Recognition.1 a Powerful Approach to Interpreting Chemical Data,” J Am Chem Soc, vol. 94, no. 16, pp. 5632–5639, Aug. 1972, doi: 10.1021/JA00771A016/ASSET/JA00771A016.FP.PNG_V03.
J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD),” JOM, vol. 65, no. 11, pp. 1501–1509, Nov. 2013, doi: 10.1007/S11837-013-0755-4/METRICS.
G. Montavon et al., “Machine Learning of Molecular Electronic Properties in Chemical Compound Space,” New J Phys, vol. 15, May 2013, doi: 10.1088/1367-2630/15/9/095003.
W. P. Walters and M. A. Murcko, “Prediction of ‘Drug-Likeness,’” Adv Drug Deliv Rev, vol. 54, no. 3, pp. 255–271, Mar. 2002, doi: 10.1016/S0169-409X(02)00003-0.
J. Jumper et al., “Highly Accurate Protein Structure Prediction with Alphafold,” Nature 2021 596:7873, vol. 596, no. 7873, pp. 583–589, Jul. 2021, doi: 10.1038/s41586-021-03819-2.
DOI: https://doi.org/10.32520/stmsi.v14i2.4961
Article Metrics
Abstract view : 169 timesPDF - 39 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.