Sentiment Analysis of the Issue of Eliminating the Independent Curriculum using the Naïve Bayes Classifier Algorithm

Ainul Haq Nurridha Warahmat Hidayat, Adhitia Erfina

Abstract


Sentiment analysis regarding the issue of eliminating the Independent Curriculum is a crucial tool for understanding public opinion, particularly among students and teachers, on changes in the education system. This study applies the Naïve Bayes Classifier method to classify positive and negative sentiments from data collected through social media platforms such as YouTube. The collected data undergoes text preprocessing techniques, including cleaning, case folding, tokenization, stopword removal, and stemming, to enhance model accuracy. The analysis is conducted using Python 3.12.3 in Google Colab with the Naïve Bayes Classifier algorithm. The results demonstrate strong performance, with a positive precision of 5% and a recall of 68%, using an 80% training and 20% testing data ratio. Findings indicate that the overall sentiment leans more negative than positive, with the majority of respondents supporting the elimination of the Independent Curriculum. This study validates the effectiveness of the Naïve Bayes method in sentiment analysis and highlights the importance of text preprocessing in improving model accuracy. Furthermore, there is potential for exploring other methods, such as word embedding and deep learning, to enhance model performance. The findings of this study can serve as a valuable reference for policymakers in understanding public opinion before making further decisions in the education sector.

Keywords


independent curriculum, naïve bayes classifier, sentiment analysis

Full Text:

PDF

References


F. Dian, “Kurikulum Merdeka dalam Pendidikan Modern,” J. Inov. Edukasi, vol. 6, no. 2, pp. 149–156, 2023, doi: 10.35141/jie.v6i2.953.

A. Zakso, “Implementasi Kurikulum Merdeka Belajar di Indonesia,” J. Pendidik. Sosiol. dan Hum., vol. 13, no. 2, p. 916, 2023, doi: 10.26418/j-psh.v13i2.65142.

M. D. Puspita, “Apakah Kurikulum Merdeka Belajar akan diganti? Ini Kata Menteri Abdul Mu’ti,” www.tempo.co. Accessed: Jan. 22, 2024. [Online]. Available: https://www.tempo.co/politik/apakah-kurikulum-merdeka-belajar-akan-diganti-ini-kata-menteri-abdul-mu-ti-1029533

V. Amanda, “Kurikulum Merdeka akan dihapus? Menteri Pendidikan yang Baru bilang Begini,” okemedan.com. Accessed: Jan. 22, 2024. [Online]. Available: https://okemedan.com/2024/10/28/kurikulum-merdeka-akandihapus-menteri-pendidikan-yang-baru-bilang-begini/

G. Jamal, “Kurikulum Merdeka dihapus dan Penerapan Kembali UN, Mendikdasmen Abdul Mu’ti Siap Luncurkan Kebijakan Baru Januari 2025, Siswa Ortu Guru Siap-siap aja,” www.pojoksatu.id. Accessed: Jan. 22, 2024. [Online]. Available: https://www.pojoksatu.id/edugov/1085285182/kurikulum-merdeka-dihapus-dan-penerapan-kembali-un-mendikdasmen-abdul-muti-siap-luncurkan-kebijakan-baru-januari-2025-siswa-ortu-guru-siap-siap-aja?page=2

F. Septarian and A. Nugroho, “Implementasi Naïve Bayes Classifier untuk Klasifikasi Implementation of Naïve Bayes Classifier for Classification of Twitter Users ’ Sentiment on Dpr,” vol. 2, no. September, pp. 483–492, 2023.

A. Z. Macfud, A. P. Kusuma, and W. D. Puspitasari, “Analisis Algoritma Naive Bayes Classifier ( NBC ),” vol. 7, no. 1, pp. 87–94, 2023.

M. Farhan, M. D. Ramayuda, and Y. Ruldeviyani, “J-Icon : Jurnal Informatika dan Komputer Analisis Sentimen Penggunaan Aplikasi Merdeka Mengajar dengan Pendekatan Naive Bayes dan Support Vector Machine J-Icon : Jurnal Informatika dan Komputer,” J-Icon J. Inform. dan Komput., vol. 12, no. 1, pp. 64–74, 2024, doi: 10.35508/jicon.v12i1.14303.

A. A. Ningtyas, A. Solichin, and R. Pradana, “Analisis Sentimen Komentar Youtube tentang Prediksi Resesi Ekonomi Tahun 2023 menggunakan Algoritme Naïve Bayes,” Bit (Fakultas Teknol. Inf. Univ. Budi Luhur), vol. 20, no. 1, p. 9, 2023, doi: 10.36080/bit.v20i1.2317.

R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.

T. T. Widowati and M. Sadikin, “Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 626–636, 2021, doi: 10.24176/simet.v11i2.4568.

F. Handayani, D. Feddy, and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110,” J. Tek. Elektro, vol. 7, no. 1, pp. 19–24, 2015.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id menggunakan Metode Naïve Bayes Classifier berbasis Konversi Ikon Emosi,” J. Simetris, vol. 10, no. 2, pp. 681–686, 2019.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

A. Lattu and D. Novira, “Analisis Sentimen Masyarakat di Instagram mengenai Kereta Cepat Jakarta-Bandung menggunakan Algoritma Naïve Bayes Classifier,” Sismatik, vol. 1, pp. 1–8, 2023.




DOI: https://doi.org/10.32520/stmsi.v14i2.5039

Article Metrics

Abstract view : 123 times
PDF - 25 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.