Public Sentiment Analysis of Nadiem Makarim as Minister of Education, Culture, Research, and Technology using Support Vector Machine (SVM)

Shasha Ramadhani Putri, Muhammad Arifin, Supriyono Supriyono

Abstract


Social media has become a primary platform for expressing opinions on the performance of public officials, including Nadiem Makarim, the Minister of Education, Culture, Research, and Technology. Opinions on Twitter reflect diverse public perceptions, making sentiment analysis essential to understanding these trends. This study aims to analyze public sentiment toward Nadiem Makarim’s performance and optimize sentiment classification models in handling data imbalance. The methodology employs a Support Vector Machine (SVM) with Term Frequency-Inverse Document Frequency (TF-IDF) through three scenarios: tuning TF-IDF parameters, selecting the best SVM kernel, and applying the Synthetic Minority Oversampling Technique (SMOTE) to address data imbalance. Experimental results indicate that the combination of max_features = 2000 and min_df = 2 yields the best F1-score of 68%, with the linear kernel being the most stable. Although SMOTE successfully balances class distribution, accuracy slightly decreases from 68% to 66%.

Keywords


sentiment analysis, support vector machine, twitter, nadiem makarim

Full Text:

PDF

References


CNN, “Tingkat Kepuasan Publik atas Kinerja Menteri dari berbagai Survei,” CNN Indonesia, 2024. https://www.cnnindonesia.com/nasional/20240110114905-617-1047602/tingkat-kepuasan-publik-atas-kinerja-menteri-dari-berbagai-survei.

R. Deswandi Yahya, S. Adi Wibowo, and N. Vendyansyah, “Analisis Sentimen untuk Deteksi Ujaran Kebencian pada Media Sosial terkait Pemilu 2024 menggunakan Metode Support Vector Machine,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1182–1189, 2024, doi: 10.36040/jati.v8i2.9076.

Suswadi and M. Erkamim, “Sentiment Analysis of Shopee App Reviews Using Random Forest and Support Vector Machine,” Ilk. J. Ilm., vol. 15, no. 3, pp. 427–435, 2023, doi: 10.33096/ilkom.v15i3.1610.427-435.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma SVM untuk Analisis Sentimen pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

H. C. Husada and A. S. Paramita, “Analisis Sentimen pada Maskapai Penerbangan di Platform Twitter menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.

N. T. Luchia et al., “Analisis Sentimen Pengguna Twitter terhadap Aplikasi TikTok menggunakan Algoritma Naïve Bayes Clasifier,” SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., no. September 2016, pp. 100–104, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas.

G. R. Ramadhan and C. A. Sugianto, “Analisis Sentimen Ulasan Aplikasi Dana di Google Play Store menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, pp. 9849–9857, 2024, doi: 10.36040/jati.v7i6.8178.

R. W. Hardian, P. E. Prasetyo, U. Khaira, and T. Suratno, “Analisis Sentiment Kuliah Daring Di Media Sosial Twitter Selama Pandemi Covid-19 menggunakan Algoritma Sentistrength,” MALCOM Indones. J. Mach. Learn. Comput. SCI., vol. 1, no. 2, pp. 138–143, 2021, doi: 10.57152/malcom.v1i2.15.

A. E. Budiman and A. Widjaja, “Analisis Pengaruh Teks Preprocessing terhadap Deteksi Plagiarisme pada Dokumen Tugas Akhir,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 475–488, 2020, doi: 10.28932/jutisi.v6i3.2892.

V. W. D. Thomas and F. Rumaisa, “Analisis Sentimen Ulasan Hotel Bahasa Indonesia menggunakan Support Vector Machine dan TF-IDF,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1767, 2022, doi: 10.30865/mib.v6i3.4218.

C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen berbasis Aspek pada Review Female Daily menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.

A. Pralabaika, “Analisa Sentimen Transisi Kendaraan Konvensional ke Listrik dengan menerapkan Algoritma Text Mining dan Term Frequency Inverse Document Frequency ( TF-IDF ),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 7, pp. 25–33, 2024, doi: 10.30865/komik.v6i1.7918.

M. P. Pulungan, A. Purnomo, and A. Kurniasih, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 7, pp. 1493–1502, 2023, doi: 10.25126/jtiik.1077989.

R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen pada Review Skincare Female Daily menggunakan Metode Support Vector Machine (SVM),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 1, pp. 40–46, 2021, doi: 10.20895/inista.v4i1.387.

D. Anggraini and T. Sutabri, “Pengembangan Aplikasi Penyaringan Spam e-Mail menggunakan Teknik Machine Learning dengan Metode Support Vector Machines,” IJM Indones. J. Multidiscip., vol. 2, pp. 106–114, 2024, [Online]. Available: https://journal.csspublishing/index.php/ijm.

E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online menggunakan Ekstraksi Fitur Model Word2vec Text Embedding dan Algoritma Support Vector Machine (SVM),” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445.

H. S. W. Hovi, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Penyakit Diabetes menggunakan Algoritma Support Vector Machine (SVM),” Informatics Digit. Expert, vol. 4, no. 1, pp. 40–45, 2022, doi: 10.36423/index.v4i1.895.

F. Darmawan, M. Joe, Y. I. Kurniawan, and L. Afuan, “Analisis Sentimen Kemungkinan Depresi dan Kecemasan pada Twitter menggunakan Support Vector Machine,” J. Eksplora Inform., vol. 13, no. 1, pp. 24–36, 2023, doi: 10.30864/eksplora.v13i1.854.

J. T. Kumalasari and A. Merdekawati, “Analisis Sentimen terhadap Program Merdeka Belajar Kampus Merdeka pada Sosial Media Twitter menggunakan K-Means Clustering, Support Vector Machine (SVM) dan Syntethic Minority Oversampling Technique (SMOTE),” SATIN Sains dan Teknol. Inf., vol. 9, no. 1, pp. 1–12, 2023.




DOI: https://doi.org/10.32520/stmsi.v14i2.5067

Article Metrics

Abstract view : 146 times
PDF - 39 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.