Liver Disease Classification using the NAIVE BAYES

Vitra Nurhalisa, Ika Nur Fajri

Abstract


The advancement of artificial intelligence technology presents new opportunities to support medical professionals in making faster and more accurate clinical decisions. This study introduces a liver disease classification system based on the Naive Bayes algorithm, designed to be easily interpretable by doctors and healthcare personnel. A dataset of 580 patients with 11 clinical attributes—ranging from bilirubin levels to albumin–globulin ratio—was used and processed through data cleaning and normalization stages. The Bernoulli Naive Bayes model was then trained and evaluated using a confusion matrix and ROC-AUC analysis. The results show an accuracy of 67%, with strong performance in identifying patients at risk of liver disease (recall of 0.82), but weaker in classifying healthy individuals (recall of 0.28). The fast training time and transparent probabilistic predictions of the Naive Bayes algorithm make it a practical solution for developing a prototype of a medical decision support system. Future recommendations include incorporating additional relevant clinical features and applying ensemble methods to improve diagnostic sensitivity and specificity.

Keywords


liver disease classification; naive bayes; data preprocessing; model evaluation; clinical decision support system

Full Text:

PDF

References


H. Devarbhavi, S. K. Asrani, J. P. Arab, Y. A. Nartey, E. Pose, and P. S. Kamath, “Global Burden of Liver Disease: 2023 Update,” Aug. 01, 2023, Elsevier B.V. doi: 10.1016/j.jhep.2023.03.017.

C. Gan et al., “Liver Diseases: Epidemiology, Causes, Trends and Predictions,” Dec. 01, 2025. doi: 10.1038/s41392-024-02072-z.

A. Trickey et al., “Hepatitis C Virus Elimination in Indonesia: Epidemiological, Cost, and Cost‐Effectiveness Modelling to Advance Advocacy and Strategic Planning,” Liver International, Vol. 40, May 2019, doi: 10.1111/liv.14232.

kemenkes, “indo liver.”

B. S. Sheena et al., “Global, Regional, and National Burden of Hepatitis B, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019,” Lancet Gastroenterol Hepatol, Vol. 7, No. 9, pp. 796–829, Sep. 2022, doi: 10.1016/S2468-1253(22)00124-8.

A. Aravind, A. G. Bahirvani, R. Quiambao, and T. Gonzalo, “Machine Learning Technology for Evaluation of Liver Fibrosis, Inflammation Activity and Steatosis (LIVERFASt<sup>TM</sup>),” Journal of Intelligent Learning Systems and Applications, Vol. 12, No. 02, pp. 31–49, 2020, doi: 10.4236/jilsa.2020.122003.

H. Hartatik, M. Tamam, and A. Setyanto, “Prediction for Diagnosing Liver Disease in Patients using KNN and Naïve Bayes Algorithms,” May 2020, pp. 1–5. doi: 10.1109/ICORIS50180.2020.9320797.

M. Elhaddad and S. Hamam, “AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential,” Cureus, Apr. 2024, doi: 10.7759/cureus.57728.

K. Kolasa, B. Admassu, M. Hołownia-Voloskova, K. J. Kędzior, J. E. Poirrier, and S. Perni, “Systematic Reviews of Machine Learning in Healthcare: A Literature Review,” 2024, Taylor and Francis Ltd. doi: 10.1080/14737167.2023.2279107.

K. H. Lee et al., “Machine Learning-based Clinical Decision Support System for Treatment Recommendation and Overall Survival Prediction of Hepatocellular Carcinoma: A Multi-Center Study,” NPJ Digit Med, Vol. 7, No. 1, Jan. 2024, doi: 10.1038/s41746-023-00976-8.

L. M. Preti, V. Ardito, A. Compagni, F. Petracca, and G. Cappellaro, “Implementation of Machine Learning Applications in Health Care Organizations: Systematic Review of Empirical Studies (Preprint),” Dec. 30, 2023. doi: 10.2196/preprints.55897.

S. R. Velu, V. Ravi, and K. Tabianan, “Data mining In Predicting Liver Patients using Classification Model,” Health Technol (Berl), Vol. 12, No. 6, pp. 1211–1235, Nov. 2022, doi: 10.1007/s12553-022-00713-3.

N. A. Aziz, A. Manzoor, M. D. M. Qureshi, M. A. Qureshi, and W. Rashwan, “Unveiling Explainable AI in Healthcare: Current Trends, Challenges, and Future Directions,” Aug. 10, 2024. doi: 10.1101/2024.08.10.24311735.

F. Rahman, D. Das, A. Sami, P. Podder, and D. L. Michael, “Liver Cirrhosis Prediction using Logistic Regression, Naïve Bayes and Knn,” International Journal of Science and Research Archive, Vol. 12, No. 1, pp. 2411–2420, Jun. 2024, doi: 10.30574/ijsra.2024.12.1.1030.

Nithyashri, H. Goel, and M. Hada, “Intelligent Classification of Liver Diseases using Ensemble Machine Learning Techniques,” May 2024, pp. 1183–1188. doi: 10.1109/ICoICI62503.2024.10696789.

Y. Ramakrishnaiah, N. Macesic, G. I. Webb, A. Y. Peleg, and S. Tyagi, “EHR-ML: A Data-Driven Framework for Designing Machine Learning Applications with Electronic Health Records,” Int J Med Inform, Vol. 196, Apr. 2025, doi: 10.1016/j.ijmedinf.2025.105816.

J. Kruta et al., “Machine Learning for Precision Diagnostics of Autoimmunity,” Sci Rep, Vol. 14, No. 1, Dec. 2024, doi: 10.1038/s41598-024-76093-7.

A. Nash, “Ndata A Framework for Automated Data Preprocessing using Machine Learning Techniques.” [Online]. Available: https://www.researchgate.net/publication/384812869

E. C. de Andrade et al., “Towards Machine Learning Algorithms in Predicting the Clinical Evolution of Patients Diagnosed with COVID-19,” Applied Sciences (Switzerland), Vol. 12, No. 18, Sep. 2022, doi: 10.3390/app12188939.

S. M. Ganie, P. K. D. Pramanik, and Z. Zhao, “Improved Liver Disease Prediction from Clinical Data Through an Evaluation of Ensemble Learning Approaches,” BMC Med Inform Decis Mak, Vol. 24, No. 1, Dec. 2024, doi: 10.1186/s12911-024-02550-y.




DOI: https://doi.org/10.32520/stmsi.v14i4.5072

Article Metrics

Abstract view : 146 times
PDF - 107 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.