Liver Disease Classification using the NAIVE BAYES
Abstract
Keywords
Full Text:
PDFReferences
H. Devarbhavi, S. K. Asrani, J. P. Arab, Y. A. Nartey, E. Pose, and P. S. Kamath, “Global Burden of Liver Disease: 2023 Update,” Aug. 01, 2023, Elsevier B.V. doi: 10.1016/j.jhep.2023.03.017.
C. Gan et al., “Liver Diseases: Epidemiology, Causes, Trends and Predictions,” Dec. 01, 2025. doi: 10.1038/s41392-024-02072-z.
A. Trickey et al., “Hepatitis C Virus Elimination in Indonesia: Epidemiological, Cost, and Cost‐Effectiveness Modelling to Advance Advocacy and Strategic Planning,” Liver International, Vol. 40, May 2019, doi: 10.1111/liv.14232.
kemenkes, “indo liver.”
B. S. Sheena et al., “Global, Regional, and National Burden of Hepatitis B, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019,” Lancet Gastroenterol Hepatol, Vol. 7, No. 9, pp. 796–829, Sep. 2022, doi: 10.1016/S2468-1253(22)00124-8.
A. Aravind, A. G. Bahirvani, R. Quiambao, and T. Gonzalo, “Machine Learning Technology for Evaluation of Liver Fibrosis, Inflammation Activity and Steatosis (LIVERFASt<sup>TM</sup>),” Journal of Intelligent Learning Systems and Applications, Vol. 12, No. 02, pp. 31–49, 2020, doi: 10.4236/jilsa.2020.122003.
H. Hartatik, M. Tamam, and A. Setyanto, “Prediction for Diagnosing Liver Disease in Patients using KNN and Naïve Bayes Algorithms,” May 2020, pp. 1–5. doi: 10.1109/ICORIS50180.2020.9320797.
M. Elhaddad and S. Hamam, “AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential,” Cureus, Apr. 2024, doi: 10.7759/cureus.57728.
K. Kolasa, B. Admassu, M. Hołownia-Voloskova, K. J. Kędzior, J. E. Poirrier, and S. Perni, “Systematic Reviews of Machine Learning in Healthcare: A Literature Review,” 2024, Taylor and Francis Ltd. doi: 10.1080/14737167.2023.2279107.
K. H. Lee et al., “Machine Learning-based Clinical Decision Support System for Treatment Recommendation and Overall Survival Prediction of Hepatocellular Carcinoma: A Multi-Center Study,” NPJ Digit Med, Vol. 7, No. 1, Jan. 2024, doi: 10.1038/s41746-023-00976-8.
L. M. Preti, V. Ardito, A. Compagni, F. Petracca, and G. Cappellaro, “Implementation of Machine Learning Applications in Health Care Organizations: Systematic Review of Empirical Studies (Preprint),” Dec. 30, 2023. doi: 10.2196/preprints.55897.
S. R. Velu, V. Ravi, and K. Tabianan, “Data mining In Predicting Liver Patients using Classification Model,” Health Technol (Berl), Vol. 12, No. 6, pp. 1211–1235, Nov. 2022, doi: 10.1007/s12553-022-00713-3.
N. A. Aziz, A. Manzoor, M. D. M. Qureshi, M. A. Qureshi, and W. Rashwan, “Unveiling Explainable AI in Healthcare: Current Trends, Challenges, and Future Directions,” Aug. 10, 2024. doi: 10.1101/2024.08.10.24311735.
F. Rahman, D. Das, A. Sami, P. Podder, and D. L. Michael, “Liver Cirrhosis Prediction using Logistic Regression, Naïve Bayes and Knn,” International Journal of Science and Research Archive, Vol. 12, No. 1, pp. 2411–2420, Jun. 2024, doi: 10.30574/ijsra.2024.12.1.1030.
Nithyashri, H. Goel, and M. Hada, “Intelligent Classification of Liver Diseases using Ensemble Machine Learning Techniques,” May 2024, pp. 1183–1188. doi: 10.1109/ICoICI62503.2024.10696789.
Y. Ramakrishnaiah, N. Macesic, G. I. Webb, A. Y. Peleg, and S. Tyagi, “EHR-ML: A Data-Driven Framework for Designing Machine Learning Applications with Electronic Health Records,” Int J Med Inform, Vol. 196, Apr. 2025, doi: 10.1016/j.ijmedinf.2025.105816.
J. Kruta et al., “Machine Learning for Precision Diagnostics of Autoimmunity,” Sci Rep, Vol. 14, No. 1, Dec. 2024, doi: 10.1038/s41598-024-76093-7.
A. Nash, “Ndata A Framework for Automated Data Preprocessing using Machine Learning Techniques.” [Online]. Available: https://www.researchgate.net/publication/384812869
E. C. de Andrade et al., “Towards Machine Learning Algorithms in Predicting the Clinical Evolution of Patients Diagnosed with COVID-19,” Applied Sciences (Switzerland), Vol. 12, No. 18, Sep. 2022, doi: 10.3390/app12188939.
S. M. Ganie, P. K. D. Pramanik, and Z. Zhao, “Improved Liver Disease Prediction from Clinical Data Through an Evaluation of Ensemble Learning Approaches,” BMC Med Inform Decis Mak, Vol. 24, No. 1, Dec. 2024, doi: 10.1186/s12911-024-02550-y.
DOI: https://doi.org/10.32520/stmsi.v14i4.5072
Article Metrics
Abstract view : 146 timesPDF - 107 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.