K-Nearest Neighbors (KNN) to Determine BBRI Stock Price

Abdullah Afif Baihaqi, M. Fakhriza

Abstract


Sales prediction is a calculation aimed at forecasting future conditions by analyzing past situations. The research method used in this study is the Research and Development (RnD) method. The modeling employs the K-Nearest Neighbor algorithm, utilizing data processed through the Knowledge Discovery in Database (KDD) stages. The objective of this research is to obtain a predictive model that can preprocess structured product data, enabling it to present a forecast for the public regarding the general overview of BBRI stock price determination, as well as to provide recommendations for BBRI stock prices that have been classified by the researcher using the K-Nearest Neighbor method. The results of the stock price prediction indicate fluctuations in value during the period, where the model is capable of capturing trends in stock price changes based on historical data. For example, on February 10, 2025, the stock price is predicted to be 4867.020, while on February 15, 2025, it rises to 5101.620. This demonstrates that the k-NN method can analyze stock price movement patterns by considering the nearest neighbors from previous data. The k-NN method has proven effective in studying historical data patterns and generating structured predictions.

Keywords


k-nearest neighbor method, stock price, RMS, rapidminer, forecasting

Full Text:

PDF

References


F. Kurnia, “Pemanfaatan Teknologi Informasi dan Komunikasi dalam Pembelajaran di SMA Bayt al-Hikmah Pasuruan,” Tarbawi J. Stud. Pendidik. Islam., vol. 11, no. 1, pp. 07–23, 2023, doi: 10.55757/tarbawi.v11i1.312.

I. G. A. D. Dhyanasaridewi, “Analisis Digitalisasi Industri, Penciptaan Kesempatan Kerja dan Tingkat Pengangguran Terbuka di Indonesia,” J. Kompleks. , vol. 9, no. 1, pp. 21–29, 2020.

D. Eko Waluyo et al., “Implementasi Algoritma Regresi pada Machine Learning untuk Prediksi Indeks Harga Saham Gabungan,” Univ. Dian Nuswantoro, Semarang Jln. Imam Bonjol, vol. 9, no. 1, pp. 12–17, 2024.

M. T. Hidayat and R. H. Laluma, “Penerapan Metode K-Nearest Neighbor untuk Klasifikasi Gizi Balita,” Infotronik J. Teknol. Inf. dan Elektron., vol. 7, no. 2, p. 64, 2022, doi: 10.32897/infotronik.2022.7.2.1702.

W. Hastomo, Aminudin, and Adhitio Satyo Bayangkari Karno, “Kemampuan Long Short Term Memory Machine Learning dalam Proyeksi Saham Bank BRI Tbk,” Univ. Gunadarma Jl. Margonda Raya, vol. 4, no. 1, p. 16424, 2020.

K. Tyas, U. Aji, T. S. Sudrajat, M. N. Djambek, and F. Indrayatna, “Prediksi Harga Saham menggunakan Algoritma K-Nearest Neighbors dan Artificial Neural Network,” 2023, [Online]. Available: https://prosidingsnsa.statistics.unpad.ac.id/

Christophorus Bintang Saputra and D. P. Koesrindartoto, “Pemanfaatan Analisis Sentimen Youtube untuk Prediksi Harga Saham: Studi pada Investor Retail Indonesia,” J. Manaj., vol. 21, no. 1, pp. 1–17, 2024, doi: 10.25170/jm.v21i1.5184.

S. P. Dewi, N. Nurwati, and E. Rahayu, “Penerapan Data Mining untuk Prediksi Penjualan Produk Terlaris menggunakan Metode K-Nearest Neighbor,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 639–648, 2022, doi: 10.47065/bits.v3i4.1408.

S. H. Yulianing Tyas, “Tinjauan Pustaka Sistematis: Perkembangan Metode Peramalan Harga Emas,” J. Informatics Commun. Technol., vol. 4, no. 1, pp. 31–39, 2022, doi: 10.52661/j_ict.v4i1.106.

D. Nurfauzan and T. Fatimah, “Implementasi Algoritma K-Nearest Neighbors Regression dalam memprediksi Harga Saham,” Semin. Nas. Mhs. …, no. September, pp. 576–584, 2022, [Online]. Available: http://senafti.budiluhur.ac.id/index.php/senafti/article/view/391%0Ahttps://senafti.budiluhur.ac.id/index.php/senafti/article/download/391/67

H. Fatah and A. Subekti, “Prediksi Harga Cryptocurrency dengan Metode K-Nearest Neighbours,” J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 137, 2018, doi: 10.33480/pilar.v14i2.894.

S. Andriani, A. Nazir, R. M. Candra, F. Syafria, and I. Afrianty, “Implementasi Algoritma K-Nearest Neighbor untuk menentukan Klasifikasi Kelulusan Mahasiswa Teknik Informatika,” J. Comput. Syst. Informatics, vol. 4, no. 4, pp. 922–930, 2023, doi: 10.47065/josyc.v4i4.3914.

O. Sihombing, E. Sitanggang, E. Luis, and K. W. Winata, “Analisis Spare Part Harbour Tag pada Divisi Workshop menggunakan Algoritma KNN Min-Max Scaling,” J. TEKINKOM, vol. 6, no. 1, pp. 72–80, 2023, doi: 10.37600/tekinkom.v6i1.742.

N. M. A. Novitadewi, P. Sugiartawan, and ..., “Klasifikasi Data Penjualan dengan Metode K-Nearest Neighbor pada PT. Terang Abadi Raya,” J. Sist. Inf. …, vol. 5, no. 1, pp. 11–20, 2022, doi: 10.33173/jsikti.173.

Miftahul Jannah, M. haviz irfani Haviz, Dewi Sartika, and Evi Purnamasari, “Prediksi Penjualan Produk pada PT Bintang Sriwijaya Palembang menggunakan K-Nearest Neighbour,” J. Softw. Eng. Comput. Intell., vol. 1, no. 2, pp. 80–89, 2023, doi: 10.36982/jseci.v1i2.3542.

W. Yusuf, R. Witri, and C. Juliane, “Model Prediksi Penjualan Jenis Produk Tekstil menggunakan Algoritma K-Nearest Neighbor (K-NN),” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 7, no. 1, pp. 1–6, 2022, doi: 10.31294/ijcit.v7i1.11973.

M. A. Hasan and D. Y. Liliana, “Pengenalan Motif Songket Palembang menggunakan Deteksi Tepi Canny, PCA dan KNN,” Multinetics, vol. 6, no. 1, pp. 1–7, 2020, doi: 10.32722/multinetics.v6i1.2700.

Okpatrioka Okpatrioka, “Research and Development (R&D) Penelitian yang Inovatif dalam Pendidikan,” Dharma Acariya Nusant. J. Pendidikan, Bhs. dan Budaya, vol. 1, no. 1, pp. 86–100, 2023, doi: 10.47861/jdan.v1i1.154.

M. Ahmad Haidar, “Knowledge Discovery in Database untuk Model Online Analytical Processing (OLAP) Data Kemiskinan,” J. Ilm. MATRIK, vol. 17, no. 2, pp. 99–108, 2015, [Online]. Available: http://www.scribd.com

O. Fian Pahothon Sukawidayanta, Y. Vita Via, and R. Mumpuni, “Penerapan Algoritma K-Nearest Neighbor dalam Sistem Pemesanan Lapangan Badminton di Kota Surabaya,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1644–1649, 2023, doi: 10.36040/jati.v7i3.6878.

N. Fatahna, S. Alifah, and S. Farisa, “Penerapan Algoritma K-Nearest Neighbor (KNN) dalam Pembuatan Sistem Penentuan Topik Artikel berbasis Web,” J. Transistor Elektro dan Inform. (TRANSISTOR EI, vol. 2, no. 1, pp. 31–39, 2017.

S. Widaningsih, A. Suheri, and T. T. Fauziyana, “Penerapan Data Mining menggunakan Algoritma K- Nearest Neighbor untuk Penentuan Penerimaan Proposal Hibah,” J. Media Tek. dan Sist. Ind., vol. 8, no. 1, p. 9, 2024, doi: 10.35194/jmtsi.v8i1.2696.




DOI: https://doi.org/10.32520/stmsi.v14i2.5098

Article Metrics

Abstract view : 152 times
PDF - 51 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.