Sentiment Analysis of Academic Application User Comments using Naïve Bayes and Particle Swarm Optimization for Feature Selection

Abdul Rahman Ismail

Abstract


The Academic Information System supports educational institutions by providing quality management programs to all students and stakeholders, relying on information and communication technologies such as the internet and local networks. Over time, this application has been consistently used by students and lecturers. However, the university has not yet evaluated the feasibility and effectiveness of the system, making it difficult to plan future improvements. Therefore, feedback from both students and lecturers is essential for guiding the system’s development. Given the current state of the application, such evaluation can be carried out through user comments. This study investigates the performance of the Naïve Bayes algorithm, one of the most commonly used algorithms in various research libraries, in analyzing sentiment from these comments. To further improve the accuracy of the Naïve Bayes method, we applied an additional Particle Swarm Optimization (PSO) feature selection process. The results demonstrate that the Naïve Bayes method with PSO achieved an accuracy of 86.27%, precision of 84.78%, and recall of 84.78%, which are higher than the results obtained using the standard Naïve Bayes method alone.

Keywords


sentiment analysis; academic system; naïve bayes

Full Text:

PDF

References


H. Sujadi, S. Fajar, and C. Roni, “Analisis Sentimen Pengguna Media Sosial Twitter terhadap Wabah Covid-19 dengan Metode Naive Bayes Classifier dan Support Vector Machine”.

A. T. Siswanto, R. R. Muhima, and S. R. Wardhana, “Analisa Sentimen Review Produk Handphone pada Situs Amazon menggunakan Pendekatan Lexicon berdasarkan Sentiwordnet,” Kernel J. Ris. Inov. Bid. Inform. Dan Pendidik. Inform., Vol. 3, No. 1, pp. 14–19, Sep. 2022, doi: 10.31284/j.kernel.2022.v3i1.1928.

M. I. Rifaldi, Y. R. Ramadhan, and I. Jaelani, “Analisis Sentimen terhadap Aplikasi Chatgpt pada Twitter menggunakan Algoritma Naïve Bayes,” J-SAKTI J. Sains Komput. Dan Inform., Vol. 7, No. 2, Art. No. 2, 2023, doi: 10.30645/j-sakti.v7i2.687.

D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset using InSet Lexicon,” Vol. 1, 2021.

A. Sharma and U. Ghose, “Sentimental Analysis of Twitter Data with respect to General Elections in India,” Procedia Comput. SCI., Vol. 173, pp. 325–334, 2020, doi: 10.1016/j.procs.2020.06.038.

Z. Munawar, Iswanto, D. Widhiantoro, and N. I. Putri, “Analisis Sentimen Covid-19 pada Media Sosial dengan Model Neural Machine Translation,” TEMATIK, Vol. 9, No. 1, pp. 15–20, Jun. 2022, doi: 10.38204/tematik.v9i1.899.

R. Safitri, N. Alfira, D. Tamitiadini, W. W. A. Dewi, and N. Febriani, Analisis Sentimen: Metode Alternatif Penelitian Big Data. Universitas Brawijaya Press, 2021.

A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play menggunakan Naïve Bayes,” J. Inform. Dan Tek. Elektro Terap., Vol. 11, No. 3s1, Art. No. 3s1, Sep. 2023, doi: 10.23960/jitet.v11i3s1.3348.

M. F. F. Supeli and S. Setiaji, “Klasifikasi Sentimen Positif dan Negatif pada Aplikasi Vidio dengan Algoritma K-Nearest Neighbor,” Indones. J. Comput. Sci., Vol. 2, No. 1, Art. No. 1, Apr. 2023, doi: 10.31294/ijcs.v2i1.1874.

O. Rakhmanov, “A Comparative Study on Vectorization and Classification Techniques in Sentiment Analysis to Classify Student-Lecturer Comments,” Procedia Comput. Sci., Vol. 178, pp. 194–204, 2020, doi: 10.1016/j.procs.2020.11.021.

H. Anwar, “Penerapan Sistem Informasi Akademik (Siakad) dalam meningkatkan Layanan Akademik di Prodi Manajemen Pendidikan Islam Fakultas Ilmu Tarbiyah dan Keguruan IAIN Sultan Amai Gorontalo,” Tadbir J. Manaj. Pendidik. Islam, Vol. 4, No. 1, Art. No. 1, Feb. 2016.

A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play menggunakan Naïve Bayes,” J. Inform. Dan Tek. Elektro Terap., Vol. 11, No. 3s1, Sep. 2023, doi: 10.23960/jitet.v11i3s1.3348.

A. Patue, G. F. Sidik, A. Affandy, and A. R. Ismail, “Sentiment Analysis of Public Comments on Licensing Services Seeks to Use the Naive Bayes Algorithm with Genetic Selection Algorithm,” Sist. J. Sist. Inf., Vol. 13, No. 1, Art. No. 1, Jan. 2024, doi: 10.32520/stmsi.v13i1.3550.

A. Mustopa, Hermanto, Anna, E. B. Pratama, A. Hendini, and D. Risdiansyah, “Analysis of User Reviews for the Peduli Lindungi Application on Google Play using the Support Vector Machine and Naive Bayes Algorithm based on Particle Swarm Optimization,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), Nov. 2020, pp. 1–7. doi: 10.1109/ICIC50835.2020.9288655.

A. R. Ismail, A. Zainul Fanani, G. F. Shidik, and Muljono, “Implementation Of Naive Bayes Algorithm with Particle Swarm Optimization In Classification Of Dress Recommendation,” in 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia: IEEE, Sep. 2020, pp. 174–178. doi: 10.1109/iSemantic50169.2020.9234293.

M. Rezki, D. N. Kholifah, M. Faisal, P. Priyono, and R. Suryadithia, “Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting menggunakan Algoritma Naïve Bayes,” J. Infortech, Vol. 2, No. 2, pp. 264–270, Dec. 2020, doi: 10.31294/infortech.v2i2.9286.




DOI: https://doi.org/10.32520/stmsi.v14i6.5214

Article Metrics

Abstract view : 6 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.