Association Rule Analysis for Sales Strategy Optimization with Apriori Algorithm Method

Avril Firda Amelia, Rochmoeljati Rochmoeljati

Abstract


PT XYZ is a manufacturing company that produces various types of industrial valves. Despite having entered the export market, the company continues to experience monthly fluctuations in order volumes due to the suboptimal use of data in formulating effective sales strategies. This study aims to identify association rules using the Apriori algorithm as the basis for sales recommendations. The analysis was conducted on transaction data from January 2024 to February 2025, using a minimum support threshold of 20% and a minimum confidence threshold of 65%, determined through exploratory analysis. The results yielded 14 first-level (L1) rules, 21 second-level (L2) rules, and 8 third-level (L3) rules, indicating associations between products that can inform cross-selling schemes and product sampling strategies. These patterns were used to design sales strategies, such as cross-selling and product bundling, to increase the average value per transaction, as well as product sampling to introduce less popular items. GV and CV products showed the strongest association, with a support value of 43%, a confidence level of 77%, and a lift value of 1.5—indicating a strong potential for increased sales when these products are offered together. These personalized strategy recommendations are expected to improve customer loyalty, expand market reach, and drive sustainable growth in the company’s sales volume.

Keywords


aturan asosiasi; apriori; valve; cross-selling; pemasaran

Full Text:

PDF

References


A. C. Puspita, B. Setiawan, C. Ayu, and J. Heikal, “Analisis Preferensi Konsumen dan Profil Pembeli di Industri Otomotif: Studi Kasus Pembelian Kendaraan di Wilayah Jabodetabek,” Akademik: Jurnal Mahasiswa Ekonomi & Bisnis, Vol. 4, no. 3, pp. 1036–1050, 2024, doi: 10.37481/jmeb.v4i3.870.

N. Angelita and H. Ali, “Pengaruh Persaingan Global , Perubahan Preferensi Konsumen dan Opini Publik terhadap Ancaman Perusahaan,” Jurnal Greenation Ilmu Teknik, Vol. 2, No. 2, pp. 85–96, 2024, doi: 10.38035/jgit.v2i2.

T. K. Husain and F. D. Amran, “Analisis Pola Pembelian Produk pada E-Commerce Panenmart,” Journal of Food System and Agribusiness, Vol. 4, No. 2, pp. 76–82, 2020, doi: 10.25181/jofsa.v4i2.1618.

M. H. Santoso, “Application of Association Rule Method using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom,” Brilliance: Research of Artificial Intelligence, Vol. 1, No. 2, pp. 54–66, 2021, doi: 10.47709/brilliance.v1i2.1228.

S. Valencia and W. T. Atmojo, “Analisis Pola Pembelian pada Data Penjualan CanNgopi menggunakan Algoritma FP-Growth,” Jurnal Komtika (Komputasi dan Informatika), Vol. 8, No. 2, pp. 214–224, 2024, doi: 10.31603/komtika.v8i2.12672.

A. Apris and D. Dahmiri, “Relationship Marketing dan Cross Selling terhadap Kinerja Pemasaran pada PT. Asuransi Umum Videi Kantor Pemasaran Jambi,” Jurnal Manajemen Terapan dan Keuangan, Vol. 10, No. 02, pp. 207–218, 2022, doi: 10.22437/jmk.v10i02.12631.

M. Jufriyano, T. B. Muslimah, and A. Setiawan, “Evaluasi Pemasaran berbasis 4P terhadap Kepuasan Konsumen dengan SEM-PLS (Structural Equation Modelling-Part Least Square) Evaluation of 4P-based Marketing on Consumer Satisfaction with SEM-PLS (Structural Equation Modelling-Part Least Square),” Jurnal Media Teknik dan Sistem Industri, Vol. 8, No. 2, pp. 104–111, 2024, doi: 10.35194/jmtsi.v8i2.4242.

A. Maulidah and F. A. Bachtiar, “Penerapan Metode Association Rule Mining untuk Asosiasi Ulasan terhadap Aspek Tempat Wisata Jawa Timur Park 3,” Jurnal Teknologi Informasi dan Ilmu Komputer, Vol. 8, No. 5, pp. 1029–1038, 2021, doi: 10.25126/jtiik.2021854417.

D. M. Sinaga, A. P. Windarto, H. S. Tambunan, and I. S. Damanik, “Data Mining menggunakan Metode Asosiasi Apriori untuk Merekomendasi Pola Obat pada Puskesmas,” Journal of Information System Research (JOSH), Vol. 3, No. 2, pp. 143–149, 2022, doi: 10.47065/josh.v3i2.1237.

A. Kurniawan and N. Suwaryo, “Analysis of the Apriori Algorithm for Enhancing Retail Product Staple Sales Recommendations,” International Journal Software Engineering and Computer Science (IJSECS), Vol. 3, No. 3, pp. 449–456, 2023, doi: 10.35870/ijsecs.v3i3.1877.

K. D. Fernanda, A. P. Widodo, and J. Lemantara, “Analysis and Implementation of the Apriori Algorithm for Strategies to Increase Sales at Sakinah Mart,” JUITA: Jurnal Informatika, Vol. 11, No. 2, p. 203, 2023, doi: 10.30595/juita.v11i2.17341.

Y. A. Iskandar, F. E. Zulvia, and A. I. Nissya, “Implementasi Algoritma Apriori untuk Peningkatan Penjualan Produk Makanan Kemasan Sehat melalui Strategi Mixed Bundling,” JISI: Jurnal Integrasi Sistem Industri, Vol. 11, No. 2, pp. 249–260, 2024.

F. D. Ramadani, B. Irawan, and A. Bahtiar, “Analisis Keranjang Pasar untuk Peningkatan Penjualan menggunakan Algoritma Apriori,” JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 3, pp. 2942–2951, 2024.

A. Harist N, I. R. Munthe, and A. P. Juledi, “Implementasi Data Mining Algoritma Apriori untuk meningkatkan Penjualan,” Jurnal Teknik Informatika UNIKA Santo Thomas, Vol. 06, No. 1, pp. 188–197, 2021, doi: 10.54367/jtiust.v6i1.1276.

L. Ningrum, R. Nooraeni, S. M. Berliana, and L. K. Sari, “Association of SDG Indicators of the Social Development Pillar in Indonesia using the Apriori Algorithm,” Procedia Computer Science, Vol. 245, No. C, pp. 450–459, 2024, doi: 10.1016/j.procs.2024.10.271.

A. Wijaya, A. Faqih, D. Solihudin, C. L. Rohmat, and S. Eka Permana, “Penerapan Association Rules menggunakan Algoritma Apriori untuk Identifikasi Pola Pembelian,” JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 7, No. 6, pp. 3871–3878, 2024, doi: 10.36040/jati.v7i6.8270.

A. Mugnia and M. M. Mutoffar, “Implementasi Algoritma Apriori untuk Sistem Rekomendasi Buku pada Perpustakaan Digital,” Jurnal Teknik Informatika dan Sistem Informasi, Vol. 11, No. 1, pp. 1–12, 2024.

M. Z. Hadi, A. H. P. Pasaribu, F. S. Didin, and L. Aulia, “A Design of Cross-Selling Products based on Frequent Itemset Mining for Coffee Shop Business,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, Vol. 11, No. 2, pp. 286–297, 2024, doi: 10.37373/tekno.v11i2.1065.

K. Mavundla, S. Thakur, E. Adetiba, and A. Abayomi, “Predicting Cross-Selling Health Insurance Products using Machine-Learning Techniques,” Journal of Computer Information Systems, Vol. 00, No. 00, pp. 1–18, 2024, doi: 10.1080/08874417.2024.2395913.

M. Sedliacikova, A. Kocianova, M. Dzian, and J. Drabek, “Product Sampling as a Sales Promotion Tool,” Marketing and Management of Innovations, No. 1, pp. 136–148, 2020, doi: 10.21272/mmi.2020.1-11.




DOI: https://doi.org/10.32520/stmsi.v14i4.5288

Article Metrics

Abstract view : 57 times
PDF - 31 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.