Implementation of the K-Means Algorithm for Customer Churn Segmentation in Developing Bank Marketing Strategies

Reva Nur Rahmadiana, Dinda Lestarini

Abstract


Customer churn, or the loss of banking clients, represents a major challenge in the banking industry due to its potential to cause significant financial losses. This study aims to segment customers based on characteristics that influence their churn risk using the K-Means algorithm. The data used in this research is secondary data consisting of 9,763 customer records from a bank customer churn dataset obtained via the Kaggle platform. The data processing follows the CRISP-DM framework. Clustering was conducted using RapidMiner, and performance was evaluated using the Davies-Bouldin Index to determine the optimal number of clusters (K). The results indicate that the optimal number of clusters is K = 4. Centroid analysis revealed that balance and estimated salary are the primary variables contributing to cluster formation. Cluster 1 and Cluster 3 had the highest number of churned customers. Cluster 1 consisted of customers with high balances but low salaries, while Cluster 3 included customers with both high balances and high salaries. These findings suggest that a high balance does not necessarily guarantee customer loyalty, and that income level plays an important role in preventing churn. Based on the analysis, recommended strategies include providing financial education and loyalty programs for customers in Cluster 1, and offering exclusive services and personalized approaches for those in Cluster 3. This study demonstrates that the K-Means algorithm is effective in producing relevant customer segmentation, serving as a valuable foundation for developing more targeted and efficient marketing strategies.

Keywords


Customer Churn; K-Means; Clustering; Bank; Segmentasi pelanggan

Full Text:

PDF

References


T. Zhang, “Prediction and Clustering of Bank Customer Churn Based on XGBoost and K-means,” 2022.

A.S. Wibow and Rusindiyanto, “Analisis Churn Nasabah Bank dengan Pendekatan Machine Learning dan Pengelompokan Profil Nasabah dengan Pendekatan Clustering,” Konstruksi: Publikasi Ilmu Teknik, Perencanaan Tata Ruang dan Teknik Sipil, Vol. 2, No. 1, pp. 30–41, Jan. 2024, doi: 10.61132/konstruksi.v2i1.43.

N. Agian, S. Dinata, G. Abdurrahman, and N. Q. Fitriyah, “Perbandingan Optimasi Algoritma Random Forest menggunakan Teknik Boosting terhadap Kasus Klasifikasi Churn Pelanggan di Industri Telekomunikasi,” Jurnal Aplikasi Sistem Informasi dan Elektronika, Vol. 5, No. 1, 2023.

A. Wicaksono, “Bianglala Informatika Uji Performa Teknik Klasifikasi untuk Memprediksi Customer Churn,” Vol. 9, No. 1, p. 2021.

S. D. Damanik and M. I. Jambak, “Klasifikasi Customer Churn pada Telekomunikasi Industri untuk Retensi Pelanggan menggunakan Algoritma C4.5,” Media Online, Vol. 3, No. 6, pp. 1303–1309, 2023, doi: 10.30865/klik.v3i6.829.

D. F. Pramesti, M. T. Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering untuk Pengelompokan Data,” 2017. [Online]. Available: http://j-ptiik.ub.ac.id

I. F. Tarigan, D. Hartama, and S. Saragih, “KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Data Mining pada Prediksi Kelayakan Pemohon Kredit Mobil dengan K-Medoids Clustering,” Media Online), Vol. 1, No. 4, pp. 170–179, 2021, [Online]. Available: https://djournals.com/klik

T. M. Dista and F. F. Abdulloh, “Clustering Pengunjung Mall menggunakan Metode K-Means dan Particle Swarm Optimization,” JURNAL MEDIA INFORMATIKA BUDIDARMA, Vol. 6, No. 3, p. 1339, Jul. 2022, doi: 10.30865/mib.v6i3.4172.

C. Zai and T. Komputer, “Implementasi Data Mining sebagai Pengolahan Data,” 2022.

A. Ayu, D. Sulistyawati, and M. Sadikin, “Sistemasi: Jurnal Sistem Informasi Penerapan Algoritma K-Medoids untuk Menentukan Segmentasi Pelanggan Penerapan Algoritma K-Medoids untuk menentukan Segmentasi Pelanggan,” 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

S. Paembonan, H. Abduh, and K. Kunci, “Penerapan Metode Silhouette Coeficient untuk Evaluasi Clutering Obat Clustering; K-means; Silhouette coeficient,” 2021. [Online]. Available: https://ojs.unanda.ac.id/index.php/jiit/index

A. Febri, N. Ningsih, J. Lemantara, J. Raya Kedung Baruk No, and K. Rungkut, “Sistemasi: Jurnal Sistem Informasi Aplikasi Analisis Segmentasi Pelanggan untuk menentukan Strategi Pemasaran menggunakan Kombinasi Metode K-Means dan Model RFM,” 2020. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

R. Siagian, P. Sirait, and A. Halim, “Sistemasi: Jurnal Sistem Informasi Penerapan Algoritma K-Means dan K-Medoids untuk Segmentasi Pelanggan pada Data Transaksi E-Commerce the Implementation of K-Means and K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions,” 2022. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

A. Fahim, “K and Starting Means for K-Means Algorithm,” J Comput SCI, Vol. 55, 2021, doi: 10.1016/j.jocs.2021.101445.

R. Rizqina and W. A. Wahyu, “Analisis Cluster dengan Algoritma K-Means, Fuzzy C-Means dan Hierarchical Clustering (Studi Kasus: Indeks Pembangunan Manusia tahun 2019),” JIKO (Jurnal Informatika dan Komputer), 2021.

R. Novianto, “Penerapan Data Mining menggunakan Algoritma K-Means Clustering untuk menganalisa Bisnis Perusahaan Asuransi,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), Vol. 6, No. 1, 2019, doi: 10.35957/jatisi.v6i1.150.

G. Radiena and A. Nugroho, “Analisis Sentimen berbasis Aspek pada Ulasan Aplikasi KAI Access menggunakan Metode Support Vector Machine,” Jurnal Pendidikan Teknologi Informasi (JUKANTI), Vol. 6, No. 1, 2023, doi: 10.37792/jukanti.v6i1.836.

F. Indriaharti Harida and N. Khazizah, “Analisis Cuaca di Kota Jakarta Bulan Januari Tahun 2018 menggunakan Algoritma Decision Tree,” Vol. 14, No. 1, pp. 33–37, 2022, [Online]. Available: https://www.kaggle.com/datasets/msf1203/pr

S. Khairunnisa and M. I. Jambak, “Pengelompokan Cuaca Kota Palembang menggunakan Algoritma K-Means Clustering untuk mengetahui Pola Karakteristik Cuaca,” Jurnal Media Informatika Budidarma, Vol. 6, No. 4, p. 2352, Oct. 2022, doi: 10.30865/mib.v6i4.4810.

P. S Ananda et al., “KMeans Clustering menggunakan RapidMiner dalam Segmentasi Pelanggan dengan Evaluasi Davies Bouldin Index untuk menentukan Jumlah Cluster paling Optimal,” Jurnal BATIRSI, Vol. 6, No. 2, 2023.




DOI: https://doi.org/10.32520/stmsi.v14i4.5341

Article Metrics

Abstract view : 79 times
PDF - 34 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.