Classification of Service Sentiments on the by.U Application using the Support Vector Machine Algorithm

Zulkarnain Zulkarnain, Rice Novita, Angraini Angraini, Zarnelly Zarnelly

Abstract


This study aims to classify user sentiment toward the by.U application service using the Support Vector Machine (SVM) algorithm. The background of this research is based on the importance of understanding user opinions on the quality of digital services as a basis for evaluation and service improvement. Review data was collected from the Google Play Store, totaling 9,091 data points, which were then processed through preprocessing stages such as cleaning, case folding, tokenization, stopword removal, and stemming. Sentiments were categorized into three groups: positive, negative, and neutral. The training and testing process involved dividing the data into training and testing sets with an 80:20 ratio, and evaluation was conducted using metrics such as accuracy, precision, recall, and F1-score. The evaluation results showed that the SVM algorithm achieved an accuracy of 83% in classifying sentiments. The model performed best on positive sentiment (precision 84%, recall 90%, F1-score 87%) and negative sentiment (precision 81%, recall 92%, F1-score 86%), while neutral sentiment still had weaknesses with an F1-score of only 64%. This indicates that neutral sentiment classification still requires model enhancement. This study demonstrates that SVM is an effective method for automatically analyzing user opinions on digital services. These classification results can serve as a reference for developers in evaluating and improving service quality based on user feedback.

Keywords


sentiment classification; by.U application; Support Vector Machine; user reviews; text mining

Full Text:

PDF

References


J. Kristiyono, “Budaya internet: Perkembangan Teknologi Informasi dan Komunikasi dalam mendukung Penggunaan Media di Masyarakat,” Scriptura, Vol. 5, No. 1, hlm. 23–30, 2015.

A. W. Lestari, A. Setiadarma, dan W. Prihatiningsih, “Pengaruh Social Media Content Instagram@ BYU. ID terhadap Brand Image Provider Digital BY. U,” Ikon–Jurnal Ilmiah Ilmu Komunikasi, Vol. 27, No. 3, hlm. 223–234, 2022. https://doi.org/10.37817/ikon.v27i3.2610

A. L. Hananto, M. Guntur, T. Tukino, dan B. Priyatna, “Perencanaan Arsitektur Enterprise pada Layanan Telekomunikasi Digital Telkomsel By. U menggunakan Zachman Framework,” Jurnal Accounting Information System (AIMS), Vol. 7, No. 1, hlm. 9–16, 2024. https://doi.org/10.32627/aims.v7i1.916

H. R. Ginaris, A. Pratama, dan E. M. Safitri, “Analisis Kepuasan Pengguna Aplikasi Mobile By. U menggunakan Metode EUCS (End User Computing Satisfaction) pada Pengguna Provider By. U di Surabaya,” Global Leadership Organizational Research in Management, Vol. 2, No. 1, hlm. 106–119, 2024.

I. A. Sapitri, Y. Yusra, dan M. Fikry, “Pengklasifikasian Sentimen Ulasan Aplikasi Whatsapp pada Google Play Store menggunakan Support Vector Machine,” Jurnal Tekinkom (Teknik Informasi dan Komputer), Vol. 6, No. 1, hlm. 1–7, 2023. https://doi.org/10.37600/tekinkom.v6i1.773

A. F. Firdaus dan W. I. Firdaus, “Text Mining dan Pola Algoritma dalam Penyelesaian Masalah Informasi:(Sebuah Ulasan),” JUPITER (Jurnal Penelitian Ilmu dan Teknologi Komputer), Vol. 13, No. 1, hlm. 66–78, 2021.

M. Eiband, S. T. Völkel, D. Buschek, S. Cook, dan H. Hussmann, “A method and analysis to elicit user-reported problems in intelligent everyday applications,” ACM Transactions on Interactive Intelligent Systems (TIIS), Vol. 10, No. 4, hlm. 1–27, 2020. https://doi.org/10.1145/3370927

R. Vincent, I. Maulana, dan O. Komarudin, “Perbandingan Klasifikasi Naive Bayes Dan Support Vector Machine dalam Analisis Sentimen dengan Multiclass di Twitter,” JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 7, No. 4, hlm. 2496–2505, 2023. https://doi.org/10.30591/jpit.v6i3.2870

S. Styawati, N. Hendrastuty, dan A. R. Isnain, “Analisis Sentimen Masyarakat terhadap Program Kartu Prakerja pada Twitter dengan Metode Support Vector Machine,” Jurnal Informatika: Jurnal Pengembangan IT, Vol. 6, No. 3, hlm. 150–155, 2021.

H. Tuhuteru dan A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” Jurnal Informatika: Jurnal Pengembangan IT, Vol. 3, No. 3, hlm. 394–401, Mei 2018, doi: 10.30591/jpit.v3i3.977.

P. A. Octaviani, Y. Wilandari, dan D. Ispriyanti, “Penerapan Metode Klasifikasi Support Vector Machine (SVM) pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang,” Vol. 3, No. 4, hlm. 811–820, 2014, [Daring]. Tersedia pada: http://ejournal-s1.undip.ac.id/index.php/gaussian

R. Astuti, R. A. Husen, A. Triono, M. K. Anam, P. S. T. I. S. A. Riau, dan J. K. M. P. Indah, “Peningkatan Metode Support Vector Machines (SVM) pada Data Child-free menggunakan Oversampling,” 2023.

A. M. Puspitasari, D. E. Ratnawati, dan A. W. Widodo, “Klasifikasi Penyakit Gigi dan Mulut menggunakan Metode Support Vector Machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No. 2, hlm. 802–810, 2018.

F. A. K. Muhammad dan R. E. Putra, “Perbandingan Analisis Sentimen untuk Prediksi Kepuasan Pelanggan Kedai Kopi di Kofind menggunakan Algoritma SVM dan Naive Bayes,” Journal of Informatics and Computer Science (JINACS), hlm. 1039–1048, 2025.

D. Atika, A. A. Aldino, J. P. A. No, L. Ratu, dan K. Kedaton, “Term Frequency-Inverse Document Frequency Support Vector Machine untuk Analisis Sentimen Opini Masyarakat terhadap Tekanan Mental pada Media Sosial Twitter,” J. Teknol. dan Sist. Inf, Vol. 3, No. 4, hlm. 86–97, 2022.

J. A. Septian, T. M. Fachrudin, dan A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” INSYST: Journal of Intelligent System and Computation, Vol. 1, No. 1, hlm. 43–49, 2019. https://doi.org/10.52985/insyst.v1i1.36

D. S. Utami dan A. Erfina, “Analisis Sentimen Pinjaman Online di Twitter menggunakan Algoritma Support Vector Machine (SVM),” dalam Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra, 2021, hlm. 299–305.

N. Fitriyah, B. Warsito, dan I. M. Di Asih, “Analisis Sentimen Gojek pada Media Sosial Twitter dengan Klasifikasi Support Vector Machine (SVM),” Jurnal Gaussian, Vol. 9, No. 3, hlm. 376–390, 2020.

B. Pamungkas, M. E. Purbaya, dan D. J. AK, “Analisis Sentimen Twitter menggunakan Metode Support Vector Machine (SVM) pada Kasus Benih Lobster 2020,” Journal of Informatics Information System Software Engineering and Applications (INISTA), Vol. 3, No. 2, hlm. 10–20, 2021.

A. W. Nugroho, “Analisis Sentimen menggunakan Algoritma Support Vector Machine pada Covid_19 Sentiment Analysis using the Support Vector Machine Algorithm on Covid_19,”SISTMASI, 2024. [Daring]. Tersedia Pada: Http://Sistemasi.Ftik.Unisi.Ac.Id

I. W. Saputro dan B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa Naïve Bayes Algorithm Performance Test for Student Study Prediction,” Citec Journal, Vol. 6, No. 1, 2019.




DOI: https://doi.org/10.32520/stmsi.v14i4.5367

Article Metrics

Abstract view : 41 times
PDF - 27 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.