Payment Status Classification Invoice Bank Using Logistic Regression and Random Forest

Farah Anindia Putri, Mujiati Dwi Kartikasari

Abstract


Payment management is an essential aspect of a bank’s financial operations, particularly in ensuring the smooth execution of procurement transactions for goods and services. The invoice, as an official document, plays a role in determining whether a transaction can be processed promptly or experiences a delay. Despite its central role, empirical research exploring the factors influencing invoice payment status remains limited, especially within the context of banking institutions. This study aims to analyze the factors that affect invoice payment status based on company type, procurement type, and invoice value. The methods employed include logistic regression and random forest to compare the classification performance of both approaches. The analysis reveals that procurement type and invoice value significantly influence payment status, with invoice value emerging as the most dominant variable based on the smallest p-value. In the random forest model, invoice value also ranks highest in terms of variable importance. In terms of accuracy, the random forest model outperforms logistic regression, achieving an accuracy of 94.47% compared to 59.30%. Although both methods yield similar precision (approximately 97%), random forest demonstrates a substantially higher recall (97.41%) and F1-score, whereas logistic regression records a recall of only 69.19%. These findings suggest that random forest is a more effective method for predicting payment status and holds strong potential for supporting data-driven decision-making in bank payment management systems

Keywords


invoice; logistic regression; payment; random forest

Full Text:

PDF

References


A. Firda, Kurniati, A. Rahman, and M. Tabran, “Perbandingan Kinerja Bank Syariah dan Bank Konvensional dalam melaksanakan Transaksi,” Al-Ubudiyah J. Pendidik. dan Stud. Islam, Vol. 4, No. 2, pp. 20–29, 2023, doi: 10.55623/au.v4i2.216.

O. J. Keuangan, “Bank Umum,” Jakarta, 2024. [Online]. Available: https://www.ojk.go.id/id/kanal/perbankan/Pages/Bank-Umum.aspx

C. D. Pratama and S. Gischa, “Sistem Pembayaran: Definisi dan Perannya dalam Perekonomian,” Kompas.com, Jakarta, Nov. 23, 2020. [Online]. Available: https://www.kompas.com/skola/read/2020/11/23/175246869/sistem-pembayaran-definisi-dan-perannya-dalam-perekonomian

Y. S. Atmaja and D. H. Paulus, “Partisipasi Bank Indonesia dalam Pengaturan Digitalisasi Sistem Pembayaran Indonesia,” Masal. Huk., Vol. 51, No. 3, pp. 271–286, 2022, doi: 10.14710/mmh.51.3.2022.271-286.

C. D. Ribkauli, “Prosedur Pembuatan Dokumen Invoice pada PT Visi Insan Pratama,” Politeknik Negeri Jakarta, 2022. [Online]. Available: https://repository.pnj.ac.id/id/eprint/7181/5/JudulPendahuluanDanPenutup.pdf

S. Haridanti, R. Adawiyah, G. S. Ariadne, F. A. Y. Putri, and Z. Ulfa, “Analisis Regresi Non Linear Model Logistik,” Seniati, Vol. 3, No. 2, pp. 62–67, 2020.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data tidak Seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., Vol. 21, No. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.

N. Sharfina and N. G. Ramadhan, “Analisis SMOTE pada Klasifikasi Hepatitis C berbasis Random Forest dan Naïve Bayes,” JOINTECS (Journal Inf. Technol. Comput. Sci., Vol. 8, No. 1, p. 33, 2023, doi: 10.31328/jointecs.v8i1.4456.

D. N. Agustia, R. R. Suryono, U. T. Indonesia, L. Ratu, and K. B. Lampung, “Comparison of Naïve Bayes , Random Forest , and Logistic Regression Algorithms for Sentiment Analysis Online Gambling Komparasi Algoritma Naïve Bayes , Random Forest, dan Logistic Regresion untuk Analisis,” Vol. 10, No. 1, pp. 284–295, 2025.

C. M. F. Andriani and D. Susilaningrum, “Klasifikasi Waiting Time for Pilot di Pelabuhan Tanjung Perak menggunakan Metode Regresi Logistik - Synthetic Minority Oversampling Technique (SMOTE),” J. Sains dan Seni ITS, Vol. 12, No. 1, 2023, doi: 10.12962/j23373520.v12i1.109844.

J. Fasilkom, “Peningkatan Akurasi Klasifikasi Tutupan Lahan menggunakan Random Forest pada Data Sentinel-2 di Jambi Author : Akhiyar Waladi,” Vol. 15, No. 1, pp. 17–24, 2025.

S. U. Panjaitan et al., “Uji Metode Naive Bayes Classifier dalam,” Vol. 7, pp. 450–462, 2022.

B. N. Azmi, A. Hermawan, and D. Avianto, “Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver,” JTIM J. Teknol. Inf. dan Multimed., Vol. 4, No. 4, pp. 281–290, 2023, doi: 10.35746/jtim.v4i4.298.

E. Sutoyo and M. A. Fadlurrahman, “Penerapan SMOTE untuk mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating menggunakan Artificial Neural Network,” J. Edukasi dan Penelit. Inform., Vol. 6, No. 3, p. 379, 2020, doi: 10.26418/jp.v6i3.42896.

D. Kartikasari, “Analisis Faktor-Faktor yang mempengaruhi Level Polusi Udara dengan Metode Regresi Logistik Biner,” MATHunesa J. Ilm. Mat., Vol. 8, No. 1, pp. 55–59, 2020, doi: 10.26740/mathunesa.v8n1.p55-59.

M. A. Suhendra, D. Ispriyanti, and S. Sudarno, “Ketepatan Klasifikasi Pemberian Kartu Keluarga Sejahtera di Kota Semarang menggunakan Metode Regresi Logistik Biner dan Metode Chaid,” J. Gaussian, Vol. 9, No. 1, pp. 64–74, 2020, doi: 10.14710/j.gauss.v9i1.27524.

M. Rosada and O. Mukhti, “Classification of Dental Caries in RSGM Baiturrahmah using the Random Forest Method,” UNP J. Stat. Data Sci., Vol. 2, No. 2, pp. 130–136, 2024.

M. Zhu, Y. Yang, X. Feng, Z. Du, and J. Yang, “Robust Modeling Method for Thermal Error of CNC Machine Tools based on Random Forest Algorithm,” J. Intell. Manuf., Vol. IV, pp. 2013–2026, 2023.

H. Junianto, R. E. Saputro, B. A. Kusuma, D. Intan, and S. Saputra, “Comparison Of Logistic Regression and Random Forest in Sentiment Analysis of Disdukcapil Application Reviews Komparasi Logistic Regression dan Random Forest dalam,” Vol. 5, No. 6, pp. 1539–1547, 2024.

L. D. Martias, “Statistika Deskriptif sebagai Kumpulan Informasi,” Fihris J. Ilmu Perpust. dan Inf., Vol. 16, No. 1, p. 40, 2021, doi: 10.14421/fhrs.2021.161.40-59.

C. Yulianto, “Model Penilaian Tanah Massal berbasis Parcel-based Mass Valuation using Random Forest in Surakarta City,” pp. 26–39, 2024.




DOI: https://doi.org/10.32520/stmsi.v14i5.5470

Article Metrics

Abstract view : 11 times
PDF - 9 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.