Sentiment Analysis of User Reviews of the KitaLulus Application on Google Play Store using the Support Vector Machine (SVM) Algorithm

Ahmad Syaifudin Agil Rafsanjani, Diana Laily Fithri, Supriyono Supriyono

Abstract


The advancement of digital technology has driven the increasing use of job search applications such as KitaLulus. User reviews on the Google Play Store serve as a crucial source for evaluating service quality and user satisfaction. This study aims to analyze user sentiment toward the KitaLulus application using the Support Vector Machine (SVM) algorithm, combined with the Synthetic Minority Over-sampling Technique (SMOTE) to address class imbalance in sentiment data. The research process includes collecting 1,000 user reviews through web scraping, text preprocessing, rating-based labeling, data transformation using TF-IDF, splitting the dataset into 80% training and 20% testing, applying SMOTE, training the SVM model, and evaluating its performance. The results show that SVM trained with SMOTE-balanced data achieved an accuracy of 89%, precision of 90%, recall of 89%, F1-score of 90%, and an AUC of 0.93. This study contributes a practical implementation of the SVM-SMOTE combination, demonstrating its effectiveness in text-based sentiment classification, particularly in handling imbalanced review data from mobile applications.

Keywords


Sentiment Analysis; KitaLulus; Support Vector Machine; SMOTE; TF-IDF

Full Text:

PDF

References


C. L. R. Dina Siti Nurrochmah, Nining Rahaningsih, Raditya Danar Dana, “Penerapan Algoritma Naive Bayes dalam Analisis Sentimen Ulasan Aplikasi Kitalulus di Google Play Store,” J. Inform. Terpadu, Vol. 9, No. 1, hal. 34–39, 2023, [Daring]. Tersedia pada: https://journal.nurulfikri.ac.id/index.php/JIT doi : https://doi.org/10.54914/jit.v11i1.1544

I. A. Ropikoh, R. Abdulhakim, U. Enri, dan N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) untuk Klasifikasi Berita Hoax Covid-19,” J. Appl. Informatics Comput., Vol. 5, No. 1, hal. 64–73, 2021, doi: 10.30871/jaic.v5i1.3167.

Eskiyaturrofikoh , dan R. R. ’Suryono, “Analisis Sentimen Aplikasi X pada Google Play Store menggunakan Algoritma Naïve Bayes dan Support Vector Machine (SVM),” JIPI(Jurnal Ilm. Penelit. dan Pembelajaran Inform., Vol. 9, No. 3, hal. 1408–1419, 2024, [Daring]. Tersedia pada: https://www.jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/5392 doi : https://doi.org/10.29100/jipi.v9i3.5392

X. Yu, S. Wu, W. Chen, dan M. Huang, “Sentiment Analysis of Public Opinions on the Higher Education Expansion Policy in China,” SAGE Open, Vol. 11, No. 3, 2021, doi: 10.1177/21582440211040778.

I. S. K. Idris, Y. A. Mustofa, dan I. A. Salihi, “Analisis Sentimen terhadap Penggunaan Aplikasi Shopee menggunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., Vol. 5, No. 1, hal. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.

R. R. S. Dimas Wahyu Bhatara, “Analisis Sentimen Aplikasi BCA Mobile menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., Vol. 10, No. 2, hal. 176–184, 2024, doi: 10.37373/tekno.v10i2.419.

S. A. R. Rizaldi, S. Alam, dan I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi JMO (Jamsostek Mobile) pada Google Play Store menggunakan Metode Naive Bayes,” STORAGE J. Ilm. Tek. dan Ilmu Komput., Vol. 2, No. 3, hal. 109–117, 2023, doi: 10.55123/storage.v2i3.2334.

R. Ulgasesa, A. B. P. Negara, dan T. Tursina, “Pengaruh Stemming terhadap Performa Klasifikasi Sentimen Masyarakat tentang Kebijakan New Normal,” J. Sist. dan Teknol. Inf., Vol. 10, No. 3, hal. 286, 2022, doi: 10.26418/justin.v10i3.53880.

H. Firda et al., “Perbandingan Pelabelan Rating - based dan Inset Lexicon - based dalam Analisis Sentimen menggunakan SVM ( Studi Kasus : Ulasan Aplikasi GoBiz di Google Play Store ) Comparison of Rating - based and Inset Lexicon - based Labeling in Sentiment Analysis usin,” Vol. 14, hal. 516–528, 2025doi : https://doi.org/10.32520/stmsi.v14i2.4795

J. A. Wibowo, V. C. Mawardi, dan T. Sutrisno, “Visualisasi Word Cloud Hasil Analisis Sentimen berbasis Fitur Layanan Aplikasi Gojek dengan Support Vector Machine,” J. Serina Sains, Tek. dan Kedokt., Vol. 2, No. 1, hal. 61–70, 2024, doi: 10.24912/jsstk.v2i1.32058.

C. H. Yutika, A. Adiwijaya, dan S. Al Faraby, “Analisis Sentimen berbasis Aspek pada Review Female Daily menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, Vol. 5, No. 2, hal. 422, 2021, doi: 10.30865/mib.v5i2.2845.

Y. A. Prasetyo, E. Utami, dan A. Yaqin, “Pengaruh Komposisi Split Data Terhadap Performa Akurasi Analisis Sentimen Algoritma Naïve Bayes dan SVM,” Vol. 6, No. 2, hal. 382–390, 2024, doi: 10.33650/jeecom.v4i2.

S. Sofyan dan A. Prasetyo, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Data Tidak Seimbang pada Tingkat Pendapatan Pekerja Informal di Provinsi D.I. Yogyakarta Tahun 2019,” Semin. Nas. Off. Stat., Vol. 2021, No. 1, hal. 868–877, 2021, doi: 10.34123/semnasoffstat.v2021i1.1081.

A. M. Yolanda dan R. T. Mulya, “Implementasi Metode Support Vector Machine untuk Analisis Sentimen pada Ulasan Aplikasi Sayurbox di Google Play Store,” Vol. 6, No. 2, hal. 76–83, 2024, doi: 10.35580/variansiunm258.

E. Hokijuliandy, H. Napitupulu, dan F. Firdaniza, “Analisis Sentimen menggunakan Metode Klasifikasi Support Vector Machine (SVM) dan Seleksi Fitur Chi-Square,” SisInfo J. Sist. Inf. dan Inform., Vol. 5, No. 2, hal. 40–49, 2023, doi: 10.37278/sisinfo.v5i2.670.

F. Kurniawati dan D. Brahma Arianto, “Analisis Implementasi Seleksi Fitur pada Klasifikasi Diabetes dengan Metode Corellation Matrix dan Algoritma Logistic Regression,” Inform. J. Ilmu Komput., Vol. 19, No. 3, hal. 157–164, 2023, doi: 10.52958/iftk.v19i3.6019.

S. F. A. W. Ditha Lozera Devi, Amalia Anjani Arifiyanti, “Analisis Sentimen Ulasan Pengguna Access By,” Vol. 12, No. 3, 2024 doi : https://doi.org/10.23960/jitet.v12i3.4892




DOI: https://doi.org/10.32520/stmsi.v14i5.5519

Article Metrics

Abstract view : 3 times
PDF - 6 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.